多端口RLC网络多点被动模型降阶的块理性Arnoldi算法

I. Elfadel, D. D. Ling
{"title":"多端口RLC网络多点被动模型降阶的块理性Arnoldi算法","authors":"I. Elfadel, D. D. Ling","doi":"10.1109/ICCAD.1997.643368","DOIUrl":null,"url":null,"abstract":"Work in the area of model-order reduction for RLC interconnect networks has focused on building reduced-order models that preserve the circuit-theoretic properties of the network, such as stability, passivity, and synthesizability (Silveira et al., 1996). Passivity is the one circuit-theoretic property that is vital for the successful simulation of a large circuit netlist containing reduced-order models of its interconnect networks. Non-passive reduced-order models may lead to instabilities even if they are themselves stable. We address the problem of guaranteeing the accuracy and passivity of reduced-order models of multiport RLC networks at any finite number of expansion points. The novel passivity-preserving model-order reduction scheme is a block version of the rational Arnoldi algorithm (Ruhe, 1994). The scheme reduces to that of (Odabasioglu et al., 1997) when applied to a single expansion point at zero frequency. Although the treatment of this paper is restricted to expansion points that are on the negative real axis, it is shown that the resulting passive reduced-order model is superior in accuracy to the one that would result from expanding the original model around a single point. Nyquist plots are used to illustrate both the passivity and the accuracy of the reduced order models.","PeriodicalId":187521,"journal":{"name":"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"50 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":"{\"title\":\"A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks\",\"authors\":\"I. Elfadel, D. D. Ling\",\"doi\":\"10.1109/ICCAD.1997.643368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Work in the area of model-order reduction for RLC interconnect networks has focused on building reduced-order models that preserve the circuit-theoretic properties of the network, such as stability, passivity, and synthesizability (Silveira et al., 1996). Passivity is the one circuit-theoretic property that is vital for the successful simulation of a large circuit netlist containing reduced-order models of its interconnect networks. Non-passive reduced-order models may lead to instabilities even if they are themselves stable. We address the problem of guaranteeing the accuracy and passivity of reduced-order models of multiport RLC networks at any finite number of expansion points. The novel passivity-preserving model-order reduction scheme is a block version of the rational Arnoldi algorithm (Ruhe, 1994). The scheme reduces to that of (Odabasioglu et al., 1997) when applied to a single expansion point at zero frequency. Although the treatment of this paper is restricted to expansion points that are on the negative real axis, it is shown that the resulting passive reduced-order model is superior in accuracy to the one that would result from expanding the original model around a single point. Nyquist plots are used to illustrate both the passivity and the accuracy of the reduced order models.\",\"PeriodicalId\":187521,\"journal\":{\"name\":\"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"50 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"160\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1997.643368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1997.643368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

摘要

RLC互连网络模型降阶领域的工作主要集中在建立保持网络电路理论特性的降阶模型,如稳定性、无源性和可合成性(Silveira et al., 1996)。无源性是电路理论的一个重要性质,它对包含其互连网络的降阶模型的大型电路网络表的成功仿真至关重要。非被动降阶模型可能导致不稳定,即使它们本身是稳定的。研究了多端口RLC网络在任意有限个数的扩展点上的降阶模型的准确性和无源性的保证问题。新的无源保持模型阶约简方案是理性Arnoldi算法的块版本(Ruhe, 1994)。当应用于零频率的单个扩展点时,该方案减少到(Odabasioglu et al., 1997)。虽然本文的处理仅限于负实轴上的展开点,但结果表明,所得的被动降阶模型的精度优于围绕单个点展开原始模型的模型。用奈奎斯特图说明了降阶模型的无源性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks
Work in the area of model-order reduction for RLC interconnect networks has focused on building reduced-order models that preserve the circuit-theoretic properties of the network, such as stability, passivity, and synthesizability (Silveira et al., 1996). Passivity is the one circuit-theoretic property that is vital for the successful simulation of a large circuit netlist containing reduced-order models of its interconnect networks. Non-passive reduced-order models may lead to instabilities even if they are themselves stable. We address the problem of guaranteeing the accuracy and passivity of reduced-order models of multiport RLC networks at any finite number of expansion points. The novel passivity-preserving model-order reduction scheme is a block version of the rational Arnoldi algorithm (Ruhe, 1994). The scheme reduces to that of (Odabasioglu et al., 1997) when applied to a single expansion point at zero frequency. Although the treatment of this paper is restricted to expansion points that are on the negative real axis, it is shown that the resulting passive reduced-order model is superior in accuracy to the one that would result from expanding the original model around a single point. Nyquist plots are used to illustrate both the passivity and the accuracy of the reduced order models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Post-route optimization for improved yield using a rubber-band wiring model Record and play: a structural fixed point iteration for sequential circuit verification Hybrid spectral/iterative partitioning A quantitative approach to functional debugging A hierarchical decomposition methodology for multistage clock circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1