基于回声状态网络的电力负荷预测

M. Jubayer, Alam Rabin, Md. Safayet Hossain, Md. Solaiman Ahsan, Md Abu, Shahab Mollah, Enamul Kabir, M. Shahjahan
{"title":"基于回声状态网络的电力负荷预测","authors":"M. Jubayer, Alam Rabin, Md. Safayet Hossain, Md. Solaiman Ahsan, Md Abu, Shahab Mollah, Enamul Kabir, M. Shahjahan","doi":"10.1109/ICCITECHN.2012.6509763","DOIUrl":null,"url":null,"abstract":"An algorithm for half hourly electrical load forecasting based on echo state neural networks (ESN) is proposed in this paper. Electrical load forecasting is one of the most challenging real life time series prediction problems. This demands a dynamic network. ESN is a new epitome for using recurrent neural networks (RNNs) with a simpler training method. Several versions of ESN are discussed. The load profile is treated as time series signal. The forecasting performance of ESN is analysed on the basis of its key parameters. ESN is compared with feed forward neural network (FNN) and Bagged Regression trees. Simulation results demonstrate that the proposed ESN algorithms can obtain more accurate forecasting results than the FNN and Bagged Regression trees.","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electrical load forecasting using echo state network\",\"authors\":\"M. Jubayer, Alam Rabin, Md. Safayet Hossain, Md. Solaiman Ahsan, Md Abu, Shahab Mollah, Enamul Kabir, M. Shahjahan\",\"doi\":\"10.1109/ICCITECHN.2012.6509763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for half hourly electrical load forecasting based on echo state neural networks (ESN) is proposed in this paper. Electrical load forecasting is one of the most challenging real life time series prediction problems. This demands a dynamic network. ESN is a new epitome for using recurrent neural networks (RNNs) with a simpler training method. Several versions of ESN are discussed. The load profile is treated as time series signal. The forecasting performance of ESN is analysed on the basis of its key parameters. ESN is compared with feed forward neural network (FNN) and Bagged Regression trees. Simulation results demonstrate that the proposed ESN algorithms can obtain more accurate forecasting results than the FNN and Bagged Regression trees.\",\"PeriodicalId\":127060,\"journal\":{\"name\":\"2012 15th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 15th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2012.6509763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于回声状态神经网络(ESN)的半小时电力负荷预测算法。电力负荷预测是现实生活中最具挑战性的时序预测问题之一。这需要一个动态的网络。回声状态网络(ESN)是递归神经网络(rnn)的一个新缩影,它的训练方法更简单。讨论了ESN的几个版本。将负荷曲线作为时间序列信号处理。根据回声状态网络的关键参数,分析了回声状态网络的预测性能。将回声状态网络与前馈神经网络(FNN)和Bagged回归树进行了比较。仿真结果表明,所提出的回声状态网络算法比FNN和Bagged回归树能获得更准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrical load forecasting using echo state network
An algorithm for half hourly electrical load forecasting based on echo state neural networks (ESN) is proposed in this paper. Electrical load forecasting is one of the most challenging real life time series prediction problems. This demands a dynamic network. ESN is a new epitome for using recurrent neural networks (RNNs) with a simpler training method. Several versions of ESN are discussed. The load profile is treated as time series signal. The forecasting performance of ESN is analysed on the basis of its key parameters. ESN is compared with feed forward neural network (FNN) and Bagged Regression trees. Simulation results demonstrate that the proposed ESN algorithms can obtain more accurate forecasting results than the FNN and Bagged Regression trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise reduction algorithm for LS channel estimation in OFDM system Composite pattern matching in time series Android mobile application: Remote monitoring of blood pressure Affective mapping of EEG during executive function tasks Distributed k-dominant skyline queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1