{"title":"一些可以用融合mac计算的函数","authors":"S. Boldo, J. Muller","doi":"10.1109/ARITH.2005.39","DOIUrl":null,"url":null,"abstract":"The fused multiply accumulate instruction (fused-mac) that is available on some current processors such as the Power PC or the Itanium eases some calculations. We give examples of some floating-point functions (such as ulp(x) or Nextafter(x, y)), or some useful tests, that are easily computable using a fused-mac. Then, we show that, with rounding to the nearest, the error of a fused-mac instruction is exactly representable as the sum of two floating-point numbers. We give an algorithm that computes that error.","PeriodicalId":194902,"journal":{"name":"17th IEEE Symposium on Computer Arithmetic (ARITH'05)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Some functions computable with a fused-mac\",\"authors\":\"S. Boldo, J. Muller\",\"doi\":\"10.1109/ARITH.2005.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fused multiply accumulate instruction (fused-mac) that is available on some current processors such as the Power PC or the Itanium eases some calculations. We give examples of some floating-point functions (such as ulp(x) or Nextafter(x, y)), or some useful tests, that are easily computable using a fused-mac. Then, we show that, with rounding to the nearest, the error of a fused-mac instruction is exactly representable as the sum of two floating-point numbers. We give an algorithm that computes that error.\",\"PeriodicalId\":194902,\"journal\":{\"name\":\"17th IEEE Symposium on Computer Arithmetic (ARITH'05)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE Symposium on Computer Arithmetic (ARITH'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2005.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE Symposium on Computer Arithmetic (ARITH'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2005.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The fused multiply accumulate instruction (fused-mac) that is available on some current processors such as the Power PC or the Itanium eases some calculations. We give examples of some floating-point functions (such as ulp(x) or Nextafter(x, y)), or some useful tests, that are easily computable using a fused-mac. Then, we show that, with rounding to the nearest, the error of a fused-mac instruction is exactly representable as the sum of two floating-point numbers. We give an algorithm that computes that error.