{"title":"线性递归的自动分层并行化","authors":"Sepideh Maleki, Martin Burtscher","doi":"10.1145/3173162.3173168","DOIUrl":null,"url":null,"abstract":"Linear recurrences encompass many fundamental computations including prefix sums and digital filters. Later result values depend on earlier result values in recurrences, making it a challenge to compute them in parallel. We present a new work- and space-efficient algorithm to compute linear recurrences that is amenable to automatic parallelization and suitable for hierarchical massively-parallel architectures such as GPUs. We implemented our approach in a domain-specific code generator that emits optimized CUDA code. Our evaluation shows that, for standard prefix sums and single-stage IIR filters, the generated code reaches the throughput of memory copy for large inputs, which cannot be surpassed. On higher-order prefix sums, it performs nearly as well as the fastest handwritten code from the literature. On tuple-based prefix sums and digital filters, our automatically parallelized code outperforms the fastest prior implementations.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"23 2-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic Hierarchical Parallelization of Linear Recurrences\",\"authors\":\"Sepideh Maleki, Martin Burtscher\",\"doi\":\"10.1145/3173162.3173168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear recurrences encompass many fundamental computations including prefix sums and digital filters. Later result values depend on earlier result values in recurrences, making it a challenge to compute them in parallel. We present a new work- and space-efficient algorithm to compute linear recurrences that is amenable to automatic parallelization and suitable for hierarchical massively-parallel architectures such as GPUs. We implemented our approach in a domain-specific code generator that emits optimized CUDA code. Our evaluation shows that, for standard prefix sums and single-stage IIR filters, the generated code reaches the throughput of memory copy for large inputs, which cannot be surpassed. On higher-order prefix sums, it performs nearly as well as the fastest handwritten code from the literature. On tuple-based prefix sums and digital filters, our automatically parallelized code outperforms the fastest prior implementations.\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"23 2-3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3173168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Hierarchical Parallelization of Linear Recurrences
Linear recurrences encompass many fundamental computations including prefix sums and digital filters. Later result values depend on earlier result values in recurrences, making it a challenge to compute them in parallel. We present a new work- and space-efficient algorithm to compute linear recurrences that is amenable to automatic parallelization and suitable for hierarchical massively-parallel architectures such as GPUs. We implemented our approach in a domain-specific code generator that emits optimized CUDA code. Our evaluation shows that, for standard prefix sums and single-stage IIR filters, the generated code reaches the throughput of memory copy for large inputs, which cannot be surpassed. On higher-order prefix sums, it performs nearly as well as the fastest handwritten code from the literature. On tuple-based prefix sums and digital filters, our automatically parallelized code outperforms the fastest prior implementations.