vin -mask:一种用于单目视觉惯性系统的ROI-mask特征跟踪器

Jiayu Sun, Fangwei Song, Luping Ji
{"title":"vin -mask:一种用于单目视觉惯性系统的ROI-mask特征跟踪器","authors":"Jiayu Sun, Fangwei Song, Luping Ji","doi":"10.1109/ICARCE55724.2022.10046501","DOIUrl":null,"url":null,"abstract":"Feature tracker is usually believed to be one of the most important components to the performance influence on a Visual-inertial System (VINS). This paper proposes the VINS-Mask scheme, a more robust feature tracker for monocular VINS through Region of Interest (ROI) masks. It could achieve real-time feature tracking with high accuracy and robustness. Firstly, we propose an edge mask to generate the edge-sensitive feature candidate regions from the incoming image frame. Next, we design an interest point sensitive SuperPoint mask with deep learning framework to obtain repeatable and reliable feature candidate regions. We also dynamically adjust the inflation radius by monitoring the initial status from VINS Initialization module to obtain more accurate ROI masks. Notably, compared with the best baseline approach (i.e., VINS-Mono), our VINS-Mask scheme achieves an average improvement accuracy of 0.068m on the dataset of EuRoc drone. After paper publication, our source codes will be available at https://github.com/sunjia-yuanro/VINS-Mask.git.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VINS-Mask: A ROI-mask Feature Tracker for Monocular Visual-inertial System\",\"authors\":\"Jiayu Sun, Fangwei Song, Luping Ji\",\"doi\":\"10.1109/ICARCE55724.2022.10046501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature tracker is usually believed to be one of the most important components to the performance influence on a Visual-inertial System (VINS). This paper proposes the VINS-Mask scheme, a more robust feature tracker for monocular VINS through Region of Interest (ROI) masks. It could achieve real-time feature tracking with high accuracy and robustness. Firstly, we propose an edge mask to generate the edge-sensitive feature candidate regions from the incoming image frame. Next, we design an interest point sensitive SuperPoint mask with deep learning framework to obtain repeatable and reliable feature candidate regions. We also dynamically adjust the inflation radius by monitoring the initial status from VINS Initialization module to obtain more accurate ROI masks. Notably, compared with the best baseline approach (i.e., VINS-Mono), our VINS-Mask scheme achieves an average improvement accuracy of 0.068m on the dataset of EuRoc drone. After paper publication, our source codes will be available at https://github.com/sunjia-yuanro/VINS-Mask.git.\",\"PeriodicalId\":416305,\"journal\":{\"name\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCE55724.2022.10046501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征跟踪器通常被认为是影响视觉惯性系统性能的重要部件之一。本文提出了一种基于感兴趣区域(ROI)掩模的单眼VINS特征跟踪算法——VINS- mask方案。该方法可以实现实时特征跟踪,具有较高的准确性和鲁棒性。首先,我们提出了一种边缘掩模,从输入的图像帧中生成边缘敏感特征候选区域。其次,利用深度学习框架设计兴趣点敏感SuperPoint掩模,获得可重复、可靠的特征候选区域。通过VINS Initialization模块对初始状态的监测,动态调整膨胀半径,获得更精确的ROI掩模。值得注意的是,与最佳基线方法(即VINS-Mono)相比,我们的VINS-Mask方案在EuRoc无人机数据集上的平均精度提高了0.068m。论文发表后,我们的源代码将在https://github.com/sunjia-yuanro/VINS-Mask.git上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VINS-Mask: A ROI-mask Feature Tracker for Monocular Visual-inertial System
Feature tracker is usually believed to be one of the most important components to the performance influence on a Visual-inertial System (VINS). This paper proposes the VINS-Mask scheme, a more robust feature tracker for monocular VINS through Region of Interest (ROI) masks. It could achieve real-time feature tracking with high accuracy and robustness. Firstly, we propose an edge mask to generate the edge-sensitive feature candidate regions from the incoming image frame. Next, we design an interest point sensitive SuperPoint mask with deep learning framework to obtain repeatable and reliable feature candidate regions. We also dynamically adjust the inflation radius by monitoring the initial status from VINS Initialization module to obtain more accurate ROI masks. Notably, compared with the best baseline approach (i.e., VINS-Mono), our VINS-Mask scheme achieves an average improvement accuracy of 0.068m on the dataset of EuRoc drone. After paper publication, our source codes will be available at https://github.com/sunjia-yuanro/VINS-Mask.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of MobileRobot Navigation System Based on ROS Platform Cooperative Pursuit in a Non-closed Bounded Domain 3D Reconstruction of Astronomical Site Selection Based on Multi-Source Remote Sensing Design and Implementation of Manipulator Based on Arduino Dynamic Reversible Data Hiding for Edge Contrast Enhancement of Medical Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1