Sang-yeop Lee, Hiroyuki Ito, S. Amakawa, N. Ishihara, K. Masu
{"title":"基于脉冲注入锁相技术的无电感级联锁相环","authors":"Sang-yeop Lee, Hiroyuki Ito, S. Amakawa, N. Ishihara, K. Masu","doi":"10.1155/2013/584341","DOIUrl":null,"url":null,"abstract":"An inductorless phase-locked loop with subharmonic pulse injection locking was realized (PLL \narea: 0.11 mm2) by adopting 90 nm Si CMOS technology. The proposed circuit is configured with two cascaded PLLs; one of them is a reference PLL that generates reference signals to the other one from low-frequency external reference signals. The other is a main PLL that generates high-frequency output signals. A high-frequency half-integral subharmonic locking technique was used to decrease the phase noise characteristics. For a 50 MHz input reference signal, without injection locking, the 1 MHz offset phase noise was −88 dBc/Hz at a PLL output frequency of 7.2 GHz (= 144 × 50 MHz); with injection locking, the noise was −101 dBc/Hz (spur level: −31 dBc; power consumption from a 1.0 V power supply: 25 mW).","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Inductorless Cascaded Phase-Locked Loop with Pulse Injection Locking Technique in 90 nm CMOS\",\"authors\":\"Sang-yeop Lee, Hiroyuki Ito, S. Amakawa, N. Ishihara, K. Masu\",\"doi\":\"10.1155/2013/584341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An inductorless phase-locked loop with subharmonic pulse injection locking was realized (PLL \\narea: 0.11 mm2) by adopting 90 nm Si CMOS technology. The proposed circuit is configured with two cascaded PLLs; one of them is a reference PLL that generates reference signals to the other one from low-frequency external reference signals. The other is a main PLL that generates high-frequency output signals. A high-frequency half-integral subharmonic locking technique was used to decrease the phase noise characteristics. For a 50 MHz input reference signal, without injection locking, the 1 MHz offset phase noise was −88 dBc/Hz at a PLL output frequency of 7.2 GHz (= 144 × 50 MHz); with injection locking, the noise was −101 dBc/Hz (spur level: −31 dBc; power consumption from a 1.0 V power supply: 25 mW).\",\"PeriodicalId\":232251,\"journal\":{\"name\":\"International Journal of Microwave Science and Technology\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/584341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/584341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Inductorless Cascaded Phase-Locked Loop with Pulse Injection Locking Technique in 90 nm CMOS
An inductorless phase-locked loop with subharmonic pulse injection locking was realized (PLL
area: 0.11 mm2) by adopting 90 nm Si CMOS technology. The proposed circuit is configured with two cascaded PLLs; one of them is a reference PLL that generates reference signals to the other one from low-frequency external reference signals. The other is a main PLL that generates high-frequency output signals. A high-frequency half-integral subharmonic locking technique was used to decrease the phase noise characteristics. For a 50 MHz input reference signal, without injection locking, the 1 MHz offset phase noise was −88 dBc/Hz at a PLL output frequency of 7.2 GHz (= 144 × 50 MHz); with injection locking, the noise was −101 dBc/Hz (spur level: −31 dBc; power consumption from a 1.0 V power supply: 25 mW).