{"title":"一种用于自供电环境传感器的新型能量收集执行器","authors":"J. Curry, N. Harris, N. White","doi":"10.1109/SAS51076.2021.9530184","DOIUrl":null,"url":null,"abstract":"This publication presents a novel actuator which makes use of temperature-dependent phase change to convert diurnal temperature variations into a variable force for energy harvesting. The developed actuator can be tuned in a variety of ways to maximise its energy output in any given environment, and paves the way towards a truly location-agnostic energy harvesting solution. Utilising this solution, initial testing indicates that up to 1.5 J of energy is available from a 20°C change in environmental temperature.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel energy harvesting actuator for self-powered environmental sensors\",\"authors\":\"J. Curry, N. Harris, N. White\",\"doi\":\"10.1109/SAS51076.2021.9530184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This publication presents a novel actuator which makes use of temperature-dependent phase change to convert diurnal temperature variations into a variable force for energy harvesting. The developed actuator can be tuned in a variety of ways to maximise its energy output in any given environment, and paves the way towards a truly location-agnostic energy harvesting solution. Utilising this solution, initial testing indicates that up to 1.5 J of energy is available from a 20°C change in environmental temperature.\",\"PeriodicalId\":224327,\"journal\":{\"name\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS51076.2021.9530184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel energy harvesting actuator for self-powered environmental sensors
This publication presents a novel actuator which makes use of temperature-dependent phase change to convert diurnal temperature variations into a variable force for energy harvesting. The developed actuator can be tuned in a variety of ways to maximise its energy output in any given environment, and paves the way towards a truly location-agnostic energy harvesting solution. Utilising this solution, initial testing indicates that up to 1.5 J of energy is available from a 20°C change in environmental temperature.