基于ANFIS的汽车发动机性能参数故障诊断

Jianhua Zhang, Li-fang Kong, Z. Tian, Wei Hao
{"title":"基于ANFIS的汽车发动机性能参数故障诊断","authors":"Jianhua Zhang, Li-fang Kong, Z. Tian, Wei Hao","doi":"10.1109/WISM.2010.149","DOIUrl":null,"url":null,"abstract":"In order to solve the fault diagnosis problem of performance Parameter, Adaptive Neuro-Fuzzy inference system (ANFIS) was applied to build a fault diagnosis model of automobile engine and induce cloud model of fan-out, outputting results are continued. Through verification of the built diagnosis model with data of engine tests, it has been found that the recognition accuracy increase from 84.38% to 98.81%, training error falling from 0.001683 to 0.0011526. Simulation results show that the fitting ability, convergence speed and recognition accuracy of improved ANFIS model are all superior to ANFIS. So a contingent fault of automobile engine can be identified effectively. Moreover, it can effectively detect the performance parameter failure for the automobile engine.","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Performance Parameter Fault Diagnosis for Automobile Engine Based on ANFIS\",\"authors\":\"Jianhua Zhang, Li-fang Kong, Z. Tian, Wei Hao\",\"doi\":\"10.1109/WISM.2010.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the fault diagnosis problem of performance Parameter, Adaptive Neuro-Fuzzy inference system (ANFIS) was applied to build a fault diagnosis model of automobile engine and induce cloud model of fan-out, outputting results are continued. Through verification of the built diagnosis model with data of engine tests, it has been found that the recognition accuracy increase from 84.38% to 98.81%, training error falling from 0.001683 to 0.0011526. Simulation results show that the fitting ability, convergence speed and recognition accuracy of improved ANFIS model are all superior to ANFIS. So a contingent fault of automobile engine can be identified effectively. Moreover, it can effectively detect the performance parameter failure for the automobile engine.\",\"PeriodicalId\":119569,\"journal\":{\"name\":\"2010 International Conference on Web Information Systems and Mining\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Web Information Systems and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISM.2010.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了解决性能参数的故障诊断问题,应用自适应神经模糊推理系统(ANFIS)建立了汽车发动机的故障诊断模型,并引入了扇出云模型,输出结果进行了延续。通过对建立的诊断模型与发动机试验数据的验证,发现识别准确率从84.38%提高到98.81%,训练误差从0.001683下降到0.0011526。仿真结果表明,改进后的ANFIS模型的拟合能力、收敛速度和识别精度均优于ANFIS。这样可以有效地识别汽车发动机的偶然故障。此外,该方法还能有效地检测汽车发动机的性能参数故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Performance Parameter Fault Diagnosis for Automobile Engine Based on ANFIS
In order to solve the fault diagnosis problem of performance Parameter, Adaptive Neuro-Fuzzy inference system (ANFIS) was applied to build a fault diagnosis model of automobile engine and induce cloud model of fan-out, outputting results are continued. Through verification of the built diagnosis model with data of engine tests, it has been found that the recognition accuracy increase from 84.38% to 98.81%, training error falling from 0.001683 to 0.0011526. Simulation results show that the fitting ability, convergence speed and recognition accuracy of improved ANFIS model are all superior to ANFIS. So a contingent fault of automobile engine can be identified effectively. Moreover, it can effectively detect the performance parameter failure for the automobile engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Simulation of Micronized Re-burning (MCR) Organic Acid Salt Used as an Accelerator The Research of the Grouping Algorithm for Chinese Learners Based on Transitive Closure Research on Multi-colony Diploid Genetic Algorithm for Production Logistics Scheduling Optimization Application of Second Order Diagonal Recurrent Neural Network in Nonlinear System Identification Synchronization Research of Uncoupled Hyper-chaotic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1