{"title":"基于集合论信念的机制设计","authors":"Jiehua Chen, S. Micali","doi":"10.1109/FOCS.2011.11","DOIUrl":null,"url":null,"abstract":"In settings of incomplete information, we put forward (1) a very conservative -- indeed, purely set-theoretic -- model of the beliefs (including totally wrong ones) that each player may have about the payoff types of his opponents, and (2) a new and robust solution concept, based on mutual belief of rationality, capable of leveraging such conservative beliefs. We exemplify the applicability of our new approach for single-good auctions, by showing that, under our solution concept, a normal-form, simple, and deterministic mechanism guarantees -- up to an arbitrarily small, additive constant -- a revenue benchmark that is always greater than or equal to the second-highest valuation, and sometimes much greater. By contrast, we also prove that the same benchmark cannot even be approximated within any positive factor, under classical solution concepts.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Mechanism Design with Set-Theoretic Beliefs\",\"authors\":\"Jiehua Chen, S. Micali\",\"doi\":\"10.1109/FOCS.2011.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In settings of incomplete information, we put forward (1) a very conservative -- indeed, purely set-theoretic -- model of the beliefs (including totally wrong ones) that each player may have about the payoff types of his opponents, and (2) a new and robust solution concept, based on mutual belief of rationality, capable of leveraging such conservative beliefs. We exemplify the applicability of our new approach for single-good auctions, by showing that, under our solution concept, a normal-form, simple, and deterministic mechanism guarantees -- up to an arbitrarily small, additive constant -- a revenue benchmark that is always greater than or equal to the second-highest valuation, and sometimes much greater. By contrast, we also prove that the same benchmark cannot even be approximated within any positive factor, under classical solution concepts.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In settings of incomplete information, we put forward (1) a very conservative -- indeed, purely set-theoretic -- model of the beliefs (including totally wrong ones) that each player may have about the payoff types of his opponents, and (2) a new and robust solution concept, based on mutual belief of rationality, capable of leveraging such conservative beliefs. We exemplify the applicability of our new approach for single-good auctions, by showing that, under our solution concept, a normal-form, simple, and deterministic mechanism guarantees -- up to an arbitrarily small, additive constant -- a revenue benchmark that is always greater than or equal to the second-highest valuation, and sometimes much greater. By contrast, we also prove that the same benchmark cannot even be approximated within any positive factor, under classical solution concepts.