Mike Klaas, M. Briers, Nando de Freitas, A. Doucet, S. Maskell, Dustin Lang
{"title":"快速粒子平滑:如果我有一百万个粒子","authors":"Mike Klaas, M. Briers, Nando de Freitas, A. Doucet, S. Maskell, Dustin Lang","doi":"10.1145/1143844.1143905","DOIUrl":null,"url":null,"abstract":"We propose efficient particle smoothing methods for generalized state-spaces models. Particle smoothing is an expensive O(N2) algorithm, where N is the number of particles. We overcome this problem by integrating dual tree recursions and fast multipole techniques with forward-backward smoothers, a new generalized two-filter smoother and a maximum a posteriori (MAP) smoother. Our experiments show that these improvements can substantially increase the practicality of particle smoothing.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":"{\"title\":\"Fast particle smoothing: if I had a million particles\",\"authors\":\"Mike Klaas, M. Briers, Nando de Freitas, A. Doucet, S. Maskell, Dustin Lang\",\"doi\":\"10.1145/1143844.1143905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose efficient particle smoothing methods for generalized state-spaces models. Particle smoothing is an expensive O(N2) algorithm, where N is the number of particles. We overcome this problem by integrating dual tree recursions and fast multipole techniques with forward-backward smoothers, a new generalized two-filter smoother and a maximum a posteriori (MAP) smoother. Our experiments show that these improvements can substantially increase the practicality of particle smoothing.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"185\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast particle smoothing: if I had a million particles
We propose efficient particle smoothing methods for generalized state-spaces models. Particle smoothing is an expensive O(N2) algorithm, where N is the number of particles. We overcome this problem by integrating dual tree recursions and fast multipole techniques with forward-backward smoothers, a new generalized two-filter smoother and a maximum a posteriori (MAP) smoother. Our experiments show that these improvements can substantially increase the practicality of particle smoothing.