网络视频分享网站极端主义视频的识别

Tianjun Fu, Chunneng Huang, Hsinchun Chen
{"title":"网络视频分享网站极端主义视频的识别","authors":"Tianjun Fu, Chunneng Huang, Hsinchun Chen","doi":"10.1109/ISI.2009.5137295","DOIUrl":null,"url":null,"abstract":"Web 2.0 has become an effective grassroots communication platform for extremists to promote their ideas, share resources, and communicate among each other. As an important component of Web 2.0, online video sharing sites such as YouTube and Google video have also been utilized by extremist groups to distribute videos. This study presented a framework for identifying extremist videos in online video sharing sites by using user-generated text content such as comments, video descriptions, and titles without downloading the videos. Text features including lexical features, syntactic features and content specific features were first extracted. Then Information Gain was used for feature selection, and Support Vector Machine was deployed for classification. The exploratory experiment showed that our proposed framework is effective for identifying online extremist videos, with the F-measure as high as 82%.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Identification of extremist videos in online video sharing sites\",\"authors\":\"Tianjun Fu, Chunneng Huang, Hsinchun Chen\",\"doi\":\"10.1109/ISI.2009.5137295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web 2.0 has become an effective grassroots communication platform for extremists to promote their ideas, share resources, and communicate among each other. As an important component of Web 2.0, online video sharing sites such as YouTube and Google video have also been utilized by extremist groups to distribute videos. This study presented a framework for identifying extremist videos in online video sharing sites by using user-generated text content such as comments, video descriptions, and titles without downloading the videos. Text features including lexical features, syntactic features and content specific features were first extracted. Then Information Gain was used for feature selection, and Support Vector Machine was deployed for classification. The exploratory experiment showed that our proposed framework is effective for identifying online extremist videos, with the F-measure as high as 82%.\",\"PeriodicalId\":210911,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2009.5137295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

Web 2.0已经成为极端分子宣传思想、共享资源、相互交流的有效草根交流平台。作为web2.0的重要组成部分,YouTube和Google视频等在线视频分享网站也被极端组织用来传播视频。本研究提出了一个框架,通过使用用户生成的文本内容,如评论、视频描述和标题,而无需下载视频,来识别在线视频共享网站中的极端主义视频。首先提取文本特征,包括词汇特征、句法特征和特定于内容的特征。然后利用信息增益进行特征选择,利用支持向量机进行分类。探索性实验表明,我们提出的框架对于识别网络极端主义视频是有效的,f值高达82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of extremist videos in online video sharing sites
Web 2.0 has become an effective grassroots communication platform for extremists to promote their ideas, share resources, and communicate among each other. As an important component of Web 2.0, online video sharing sites such as YouTube and Google video have also been utilized by extremist groups to distribute videos. This study presented a framework for identifying extremist videos in online video sharing sites by using user-generated text content such as comments, video descriptions, and titles without downloading the videos. Text features including lexical features, syntactic features and content specific features were first extracted. Then Information Gain was used for feature selection, and Support Vector Machine was deployed for classification. The exploratory experiment showed that our proposed framework is effective for identifying online extremist videos, with the F-measure as high as 82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1