{"title":"用于ULSI应用的ni -硅化物/Si和SiGe(C)接触技术","authors":"O. Nakatsuka, S. Zaima, A. Sakai, M. Ogawa","doi":"10.1109/RTP.2006.367979","DOIUrl":null,"url":null,"abstract":"We have investigated the crystalline and electrical properties of Ni silicide/Si and SiGeC contacts for ULSI applications. NiSi/Si contacts promises the contact resistivity as low as 10-8 Omegacm2 for both n+- and p+-Si. Degradation of the sheet resistance of NiSi layers critically depends on the annealing time particularly at temperatures ranging from 650degC to 750degC. The enlargement of the Si-exposed region concomitant with the NiSi agglomeration is a dominant factor responsible for the increase in sheet resistance and the activation energy of this process is estimated to be 2.8plusmn0.4 eV. Incorporation of Ge into Ni/Si systems is effective in raising the transformation temperature from NiSi to NiSi2. Incorporation of C into NiSi/Si system effectively suppresses the NiSi agglomeration. C introduction also causes the pile-up of B atoms at the NiSi/Si interface, which promises the reduction of the contact resistivity","PeriodicalId":114586,"journal":{"name":"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni-Silicide/Si and SiGe(C) Contact Technology for ULSI Applications\",\"authors\":\"O. Nakatsuka, S. Zaima, A. Sakai, M. Ogawa\",\"doi\":\"10.1109/RTP.2006.367979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the crystalline and electrical properties of Ni silicide/Si and SiGeC contacts for ULSI applications. NiSi/Si contacts promises the contact resistivity as low as 10-8 Omegacm2 for both n+- and p+-Si. Degradation of the sheet resistance of NiSi layers critically depends on the annealing time particularly at temperatures ranging from 650degC to 750degC. The enlargement of the Si-exposed region concomitant with the NiSi agglomeration is a dominant factor responsible for the increase in sheet resistance and the activation energy of this process is estimated to be 2.8plusmn0.4 eV. Incorporation of Ge into Ni/Si systems is effective in raising the transformation temperature from NiSi to NiSi2. Incorporation of C into NiSi/Si system effectively suppresses the NiSi agglomeration. C introduction also causes the pile-up of B atoms at the NiSi/Si interface, which promises the reduction of the contact resistivity\",\"PeriodicalId\":114586,\"journal\":{\"name\":\"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"volume\":\"287 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTP.2006.367979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2006.367979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ni-Silicide/Si and SiGe(C) Contact Technology for ULSI Applications
We have investigated the crystalline and electrical properties of Ni silicide/Si and SiGeC contacts for ULSI applications. NiSi/Si contacts promises the contact resistivity as low as 10-8 Omegacm2 for both n+- and p+-Si. Degradation of the sheet resistance of NiSi layers critically depends on the annealing time particularly at temperatures ranging from 650degC to 750degC. The enlargement of the Si-exposed region concomitant with the NiSi agglomeration is a dominant factor responsible for the increase in sheet resistance and the activation energy of this process is estimated to be 2.8plusmn0.4 eV. Incorporation of Ge into Ni/Si systems is effective in raising the transformation temperature from NiSi to NiSi2. Incorporation of C into NiSi/Si system effectively suppresses the NiSi agglomeration. C introduction also causes the pile-up of B atoms at the NiSi/Si interface, which promises the reduction of the contact resistivity