{"title":"二维曲面物体的近似一般扫描边界","authors":"Ahn J.W., Kim M.S., Lim S.B.","doi":"10.1006/cgip.1993.1008","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an algorithm to compute an approximation to the general sweep boundary of a 2D curved moving object which changes its shape dynamically while traversing a trajectory. In effect, we make polygonal approximations to the trajectory and to the object shape at every appropriate instance along the trajectory so that the approximated polygonal sweep boundary is within a given error bound ϵ > 0 from the exact sweep boundary. The algorithm interpolates intermediate polygonal shapes between any two consecutive instances, and constructs polygons which approximate the sweep boundary of the object. Previous algorithms on sweep boundary computation have been mainly concerned about moving objects with fixed shapes; nevertheless, they have involved a fair amount of symbolic and/or numerical computations that have limited their practical uses in graphics modeling systems as well as in many other applications which require fast sweep boundary computation. Although the algorithm presented here does not generate the exact sweep boundaries of objects, it does yield quite reasonable polygonal approximations to them, and our experimental results show that its computation is reasonably fast to be of a practical use.</p></div>","PeriodicalId":100349,"journal":{"name":"CVGIP: Graphical Models and Image Processing","volume":"55 2","pages":"Pages 98-128"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/cgip.1993.1008","citationCount":"36","resultStr":"{\"title\":\"Approximate General Sweep Boundary of a 2D Curved Object\",\"authors\":\"Ahn J.W., Kim M.S., Lim S.B.\",\"doi\":\"10.1006/cgip.1993.1008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an algorithm to compute an approximation to the general sweep boundary of a 2D curved moving object which changes its shape dynamically while traversing a trajectory. In effect, we make polygonal approximations to the trajectory and to the object shape at every appropriate instance along the trajectory so that the approximated polygonal sweep boundary is within a given error bound ϵ > 0 from the exact sweep boundary. The algorithm interpolates intermediate polygonal shapes between any two consecutive instances, and constructs polygons which approximate the sweep boundary of the object. Previous algorithms on sweep boundary computation have been mainly concerned about moving objects with fixed shapes; nevertheless, they have involved a fair amount of symbolic and/or numerical computations that have limited their practical uses in graphics modeling systems as well as in many other applications which require fast sweep boundary computation. Although the algorithm presented here does not generate the exact sweep boundaries of objects, it does yield quite reasonable polygonal approximations to them, and our experimental results show that its computation is reasonably fast to be of a practical use.</p></div>\",\"PeriodicalId\":100349,\"journal\":{\"name\":\"CVGIP: Graphical Models and Image Processing\",\"volume\":\"55 2\",\"pages\":\"Pages 98-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/cgip.1993.1008\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049965283710084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049965283710084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate General Sweep Boundary of a 2D Curved Object
This paper presents an algorithm to compute an approximation to the general sweep boundary of a 2D curved moving object which changes its shape dynamically while traversing a trajectory. In effect, we make polygonal approximations to the trajectory and to the object shape at every appropriate instance along the trajectory so that the approximated polygonal sweep boundary is within a given error bound ϵ > 0 from the exact sweep boundary. The algorithm interpolates intermediate polygonal shapes between any two consecutive instances, and constructs polygons which approximate the sweep boundary of the object. Previous algorithms on sweep boundary computation have been mainly concerned about moving objects with fixed shapes; nevertheless, they have involved a fair amount of symbolic and/or numerical computations that have limited their practical uses in graphics modeling systems as well as in many other applications which require fast sweep boundary computation. Although the algorithm presented here does not generate the exact sweep boundaries of objects, it does yield quite reasonable polygonal approximations to them, and our experimental results show that its computation is reasonably fast to be of a practical use.