水下用湿配合电连接器往复密封分析

Han Quan, Yan Zhang, Chen Haiyang, Juekuan Yang, Yunfei Chen
{"title":"水下用湿配合电连接器往复密封分析","authors":"Han Quan, Yan Zhang, Chen Haiyang, Juekuan Yang, Yunfei Chen","doi":"10.1115/IMECE2018-86988","DOIUrl":null,"url":null,"abstract":"In order to complete the mating and demating operations of the electrical connectors for underwater applications in the deep water environment, the pressure-balanced oil-filled (PBOF) structures are designed to compensate the huge water pressure. This paper focuses on the sealing performance of three sealing systems used in connectors, including the O-ring seals, rectangular seals, and U-cup seals. A method coupled the finite element analysis and elastohy-drodynamic lubrication (EHL) numerical model is presented to describe the issue. Results show that the rectangular seals perform best in fluid leakage, and O-ring seals are better in reducing the friction force. The oil leakages of the seals increase with the speed while the seawater leakages remain roughly constant. And the oil leakages of all the seals are larger than the seawater leakage. Types of seal rings, fluid viscosity and operation speed of connector can all influence the sealing performance of wet-mate connectors.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Reciprocating Seals in the Wet-Mate Electrical Connectors for Underwater Applications\",\"authors\":\"Han Quan, Yan Zhang, Chen Haiyang, Juekuan Yang, Yunfei Chen\",\"doi\":\"10.1115/IMECE2018-86988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to complete the mating and demating operations of the electrical connectors for underwater applications in the deep water environment, the pressure-balanced oil-filled (PBOF) structures are designed to compensate the huge water pressure. This paper focuses on the sealing performance of three sealing systems used in connectors, including the O-ring seals, rectangular seals, and U-cup seals. A method coupled the finite element analysis and elastohy-drodynamic lubrication (EHL) numerical model is presented to describe the issue. Results show that the rectangular seals perform best in fluid leakage, and O-ring seals are better in reducing the friction force. The oil leakages of the seals increase with the speed while the seawater leakages remain roughly constant. And the oil leakages of all the seals are larger than the seawater leakage. Types of seal rings, fluid viscosity and operation speed of connector can all influence the sealing performance of wet-mate connectors.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了在深水环境下完成水下电连接器的配合和拆卸作业,设计了压力平衡充油结构来补偿巨大的水压。本文重点介绍了连接器中使用的三种密封系统的密封性能,包括o型环密封、矩形密封和u型杯密封。提出了一种有限元分析与弹流动力润滑数值模型相结合的方法来描述这一问题。结果表明,矩形密封对流体泄漏的抑制效果最好,而o形圈密封对减小摩擦力的抑制效果最好。油封泄漏量随速度增加而增加,而海水泄漏量基本保持不变。所有密封件的漏油量均大于海水泄漏量。密封圈的类型、流体粘度和连接器的运行速度都会影响湿配合连接器的密封性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Reciprocating Seals in the Wet-Mate Electrical Connectors for Underwater Applications
In order to complete the mating and demating operations of the electrical connectors for underwater applications in the deep water environment, the pressure-balanced oil-filled (PBOF) structures are designed to compensate the huge water pressure. This paper focuses on the sealing performance of three sealing systems used in connectors, including the O-ring seals, rectangular seals, and U-cup seals. A method coupled the finite element analysis and elastohy-drodynamic lubrication (EHL) numerical model is presented to describe the issue. Results show that the rectangular seals perform best in fluid leakage, and O-ring seals are better in reducing the friction force. The oil leakages of the seals increase with the speed while the seawater leakages remain roughly constant. And the oil leakages of all the seals are larger than the seawater leakage. Types of seal rings, fluid viscosity and operation speed of connector can all influence the sealing performance of wet-mate connectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineering a Pool Ladder to Prevent Drownings in Above-Ground Pools Side Structure Integrity Research for Passenger Rail Equipment A Set of Preliminary Model Experiments for Studying Engineering Student Biases in the Assessment and Prioritization of Risks Uncertainty Optimization Design of Vehicle Wheel Made of Long Glass Fiber Reinforced Thermoplastic Limit Load Analysis of As-Fabricated Pipe Bends With Low Ovality Under In-Plane Closing Moment Loading and Internal Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1