FinSBD-3任务:使用数据增强和混合深度学习模型对英语和法语中有噪声的金融文本进行结构边界检测

Ke Tian, Hua Chen
{"title":"FinSBD-3任务:使用数据增强和混合深度学习模型对英语和法语中有噪声的金融文本进行结构边界检测","authors":"Ke Tian, Hua Chen","doi":"10.1145/3442442.3451380","DOIUrl":null,"url":null,"abstract":"Both authors contributed equally to this research. This paper presents the method that we tackled the FinSBD-3 shared task (structure boundary detection) to extract the boundaries of sentences, lists, and items, including structure elements like footer, header, tables from noisy unstructured English and French financial texts. The deep attention model based on word embedding using data augmentation and BERT model named as hybrid deep learning model to detect the sentence, list-item, footer, header, tables boundaries in noisy English and French texts and classify the list-item sentences into list & different item types using deep attention model. The experiment is shown that the proposed method could be an effective solution to deal with the FinSBD-3 shared task. The submitted result ranks first based on the task metrics in the final leader board.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"aiai at the FinSBD-3 task: Structure Boundary Detection of Noisy Financial Texts in English and French Using Data Augmentation and Hybrid Deep Learning Model\",\"authors\":\"Ke Tian, Hua Chen\",\"doi\":\"10.1145/3442442.3451380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both authors contributed equally to this research. This paper presents the method that we tackled the FinSBD-3 shared task (structure boundary detection) to extract the boundaries of sentences, lists, and items, including structure elements like footer, header, tables from noisy unstructured English and French financial texts. The deep attention model based on word embedding using data augmentation and BERT model named as hybrid deep learning model to detect the sentence, list-item, footer, header, tables boundaries in noisy English and French texts and classify the list-item sentences into list & different item types using deep attention model. The experiment is shown that the proposed method could be an effective solution to deal with the FinSBD-3 shared task. The submitted result ranks first based on the task metrics in the final leader board.\",\"PeriodicalId\":129420,\"journal\":{\"name\":\"Companion Proceedings of the Web Conference 2021\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442442.3451380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

两位作者对这项研究的贡献相同。本文介绍了我们处理FinSBD-3共享任务(结构边界检测)的方法,以从嘈杂的非结构化英语和法语金融文本中提取句子、列表和项目的边界,包括结构元素,如页脚、页眉、表格。采用数据增强的基于词嵌入的深度注意模型和BERT模型作为混合深度学习模型,检测噪声英语和法语文本中的句子、list-item、页脚、页眉、表边界,并使用深度注意模型将list-item句子分类为list &不同的item类型。实验结果表明,该方法是处理FinSBD-3共享任务的有效解决方案。根据任务指标,提交的结果在最终排行榜中排名第一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
aiai at the FinSBD-3 task: Structure Boundary Detection of Noisy Financial Texts in English and French Using Data Augmentation and Hybrid Deep Learning Model
Both authors contributed equally to this research. This paper presents the method that we tackled the FinSBD-3 shared task (structure boundary detection) to extract the boundaries of sentences, lists, and items, including structure elements like footer, header, tables from noisy unstructured English and French financial texts. The deep attention model based on word embedding using data augmentation and BERT model named as hybrid deep learning model to detect the sentence, list-item, footer, header, tables boundaries in noisy English and French texts and classify the list-item sentences into list & different item types using deep attention model. The experiment is shown that the proposed method could be an effective solution to deal with the FinSBD-3 shared task. The submitted result ranks first based on the task metrics in the final leader board.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do I Trust this Stranger? Generalized Trust and the Governance of Online Communities Explainable Demand Forecasting: A Data Mining Goldmine Tracing the Factoids: the Anatomy of Information Re-organization in Wikipedia Articles AI Principles in Identifying Toxicity in Online Conversation: Keynote at the Third Workshop on Fairness, Accountability, Transparency, Ethics and Society on the Web Fairness beyond “equal”: The Diversity Searcher as a Tool to Detect and Enhance the Representation of Socio-political Actors in News Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1