基于仿真设计的汽车轻量化铝底盘分析

M. Alardhi, F. Almaskari, Melad Fahed, J. Alrajhi
{"title":"基于仿真设计的汽车轻量化铝底盘分析","authors":"M. Alardhi, F. Almaskari, Melad Fahed, J. Alrajhi","doi":"10.34257/gjrejvol20is1pg1","DOIUrl":null,"url":null,"abstract":"This study investigates different chassis designs through a simulation-based design approach. The inherent aluminum ductility and softness could make chassis a daunting modification if not analyzed properly. Structural finite element analysis is comprehensively performed on a vehicle chassis for static loading cases up to 1G in equivalent acceleration. The analysis of the vehicle chassis of both A36 steel and 6061 aluminum for the scenarios of bump, front impact, side impact and a rollover. The von Mises stresses and displacement results showed that the steel chassis possessed higher safety factor in all load cases. The safety factors for an aluminum clone of the steel chassis in some load cases are below 1.0, hence indicating that the failure criterion has been triggered and failure would occur under the 1G load. The original aluminum chassis deformation is far more severe than steel reaching as high as 9.88 mm for the bump loading. A modified aluminum chassis is proposed, by optimizing the wall thickness of the rectangular bars. The slight increase in weight resulted in overcoming the deficiency of aluminum in load carrying capacity. An evaluation matrix procedure is implemented to analyze the trade offs between cost, weight and safety factor for the three chassis materials.","PeriodicalId":342934,"journal":{"name":"Global Journal of Researches in Engineering","volume":"368 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of a Lightweight Aluminum Vehicle Chassis in a Simulation-Based Design Approach\",\"authors\":\"M. Alardhi, F. Almaskari, Melad Fahed, J. Alrajhi\",\"doi\":\"10.34257/gjrejvol20is1pg1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates different chassis designs through a simulation-based design approach. The inherent aluminum ductility and softness could make chassis a daunting modification if not analyzed properly. Structural finite element analysis is comprehensively performed on a vehicle chassis for static loading cases up to 1G in equivalent acceleration. The analysis of the vehicle chassis of both A36 steel and 6061 aluminum for the scenarios of bump, front impact, side impact and a rollover. The von Mises stresses and displacement results showed that the steel chassis possessed higher safety factor in all load cases. The safety factors for an aluminum clone of the steel chassis in some load cases are below 1.0, hence indicating that the failure criterion has been triggered and failure would occur under the 1G load. The original aluminum chassis deformation is far more severe than steel reaching as high as 9.88 mm for the bump loading. A modified aluminum chassis is proposed, by optimizing the wall thickness of the rectangular bars. The slight increase in weight resulted in overcoming the deficiency of aluminum in load carrying capacity. An evaluation matrix procedure is implemented to analyze the trade offs between cost, weight and safety factor for the three chassis materials.\",\"PeriodicalId\":342934,\"journal\":{\"name\":\"Global Journal of Researches in Engineering\",\"volume\":\"368 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Researches in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/gjrejvol20is1pg1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Researches in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjrejvol20is1pg1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究通过基于仿真的设计方法研究了不同的底盘设计。固有的铝延展性和柔软性可能使底盘一个艰巨的修改,如果不正确分析。在等效加速度为1G的静载荷情况下,对汽车底盘进行了结构有限元分析。对A36钢底盘和6061铝底盘进行了碰撞、正面撞击、侧面撞击和侧翻的分析。von Mises应力和位移结果表明,钢底盘在所有荷载情况下都具有较高的安全系数。铝克隆钢底盘在某些载荷情况下的安全系数低于1.0,说明在1G载荷下已经触发了失效准则,会发生失效。原铝底盘在颠簸载荷下的变形远比钢严重,高达9.88毫米。通过优化矩形杆的壁厚,提出了一种改进的铝底盘。重量的轻微增加克服了铝在承载能力上的不足。采用评价矩阵法对三种底盘材料的成本、重量和安全系数进行了权衡分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of a Lightweight Aluminum Vehicle Chassis in a Simulation-Based Design Approach
This study investigates different chassis designs through a simulation-based design approach. The inherent aluminum ductility and softness could make chassis a daunting modification if not analyzed properly. Structural finite element analysis is comprehensively performed on a vehicle chassis for static loading cases up to 1G in equivalent acceleration. The analysis of the vehicle chassis of both A36 steel and 6061 aluminum for the scenarios of bump, front impact, side impact and a rollover. The von Mises stresses and displacement results showed that the steel chassis possessed higher safety factor in all load cases. The safety factors for an aluminum clone of the steel chassis in some load cases are below 1.0, hence indicating that the failure criterion has been triggered and failure would occur under the 1G load. The original aluminum chassis deformation is far more severe than steel reaching as high as 9.88 mm for the bump loading. A modified aluminum chassis is proposed, by optimizing the wall thickness of the rectangular bars. The slight increase in weight resulted in overcoming the deficiency of aluminum in load carrying capacity. An evaluation matrix procedure is implemented to analyze the trade offs between cost, weight and safety factor for the three chassis materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey on Methods to Optimize Power Harvesting in Drones Calculation of Time-Varying Mesh Stiffness of Internal Gears based on Precise Tooth Profile and Dynamic Analysis of Planetary Systems with Root Cracks Hydrogen for Mobility: A Pathway to a Zero Carbon Transportation System Systems Energodynamic Approach as an Instrument of Increasing Efficiency of Engineering Developments Optimizing Smart Factories: A Data-Driven Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1