不要对定量变量进行分组

Bendix Carstensen
{"title":"不要对定量变量进行分组","authors":"Bendix Carstensen","doi":"10.1093/OSO/9780198841326.003.0010","DOIUrl":null,"url":null,"abstract":"This chapter explores the problems caused by categorizing quantitative variables (here termed continuous variables). Optimum decisions are made by applying a utility function to a predicted value. At the decision point, one can solve for the personalized cutpoint for predicted risk that optimizes the decision. Dichotomization on independent variables is completely at odds with making optimal decisions. To make an optimal decision, the cutpoint for a predictor would necessarily be a function of the continuous values of all the other predictors. Moreover, categorization assumes that the relationship between the predictor and the response is flat within intervals; this assumption is far less reasonable than a linearity assumption in most cases. Categorization of continuous variables using percentiles is particularly hazardous. To make a continuous predictor be more accurately modelled when categorization is used, multiple intervals are required.","PeriodicalId":177736,"journal":{"name":"Epidemiology with R","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do not group quantitative variables\",\"authors\":\"Bendix Carstensen\",\"doi\":\"10.1093/OSO/9780198841326.003.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter explores the problems caused by categorizing quantitative variables (here termed continuous variables). Optimum decisions are made by applying a utility function to a predicted value. At the decision point, one can solve for the personalized cutpoint for predicted risk that optimizes the decision. Dichotomization on independent variables is completely at odds with making optimal decisions. To make an optimal decision, the cutpoint for a predictor would necessarily be a function of the continuous values of all the other predictors. Moreover, categorization assumes that the relationship between the predictor and the response is flat within intervals; this assumption is far less reasonable than a linearity assumption in most cases. Categorization of continuous variables using percentiles is particularly hazardous. To make a continuous predictor be more accurately modelled when categorization is used, multiple intervals are required.\",\"PeriodicalId\":177736,\"journal\":{\"name\":\"Epidemiology with R\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology with R\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780198841326.003.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology with R","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841326.003.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章探讨定量变量(这里称为连续变量)的分类所引起的问题。通过将效用函数应用于预测值来做出最优决策。在决策点上,可以求解预测风险的个性化截断点,从而优化决策。对自变量进行二分类与做出最佳决策是完全不一致的。为了做出最优决策,预测器的切点必须是所有其他预测器连续值的函数。此外,分类假设预测器和响应之间的关系在区间内是平坦的;在大多数情况下,这种假设远不如线性假设合理。使用百分位数对连续变量进行分类尤其危险。在使用分类时,为了使连续预测器更准确地建模,需要多个区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do not group quantitative variables
This chapter explores the problems caused by categorizing quantitative variables (here termed continuous variables). Optimum decisions are made by applying a utility function to a predicted value. At the decision point, one can solve for the personalized cutpoint for predicted risk that optimizes the decision. Dichotomization on independent variables is completely at odds with making optimal decisions. To make an optimal decision, the cutpoint for a predictor would necessarily be a function of the continuous values of all the other predictors. Moreover, categorization assumes that the relationship between the predictor and the response is flat within intervals; this assumption is far less reasonable than a linearity assumption in most cases. Categorization of continuous variables using percentiles is particularly hazardous. To make a continuous predictor be more accurately modelled when categorization is used, multiple intervals are required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Survival analysis Case-control and case-cohort studies Do not group quantitative variables Regression models Using R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1