在集群多核处理器上构造三次样条的并行算法

Hakimjon Zaynidinov, O. Mallayev, Javohir Nurmurodov
{"title":"在集群多核处理器上构造三次样条的并行算法","authors":"Hakimjon Zaynidinov, O. Mallayev, Javohir Nurmurodov","doi":"10.1109/AICT50176.2020.9368680","DOIUrl":null,"url":null,"abstract":"The article explores the possibility of computing parallel data compression using cubic spline. For example, ways to parallel the process of digital processing of seismic signals have been considered. The main performance indicators of parallel algorithms have been compared with consecutive algorithms. Spline methods are a versatile signal processing tool. It is more accurate than other mathematical methods, information equality is faster, and maintenance costs are much lower. On the other hand, the equipment used in such systems must also meet high performance requirements. To achieve high speeds, parallel algorithms were developed using OpenMP and MPI technologies and implemented in the architecture of multi-core processors. A mathematical method for the parallel calculation of the coefficients of a cubic spline has been developed and a parallel signal processing algorithm has been developed on its basis. As an example, parallelization is a computation during seismic signal processing. The main indicators of efficiency and acceleration of the parallel algorithm were compared with the sequential algorithm. Explained the relevance of the use of parallel numerical systems, described the main approaches to the distribution of processes and methods of data processing, described the principles of parallel programming technology, studied the basic parameters of parallel algorithms for the initial calculation of the numerical value of cubic spline. The parallel algorithm considered for constructing the cubic spline of defect 1 as p - > n leads to the construction of a local cubic spline on each grid interval ω.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel Algorithm For Constructing a Cubic Spline on Multi-Core Processors in a Cluster\",\"authors\":\"Hakimjon Zaynidinov, O. Mallayev, Javohir Nurmurodov\",\"doi\":\"10.1109/AICT50176.2020.9368680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article explores the possibility of computing parallel data compression using cubic spline. For example, ways to parallel the process of digital processing of seismic signals have been considered. The main performance indicators of parallel algorithms have been compared with consecutive algorithms. Spline methods are a versatile signal processing tool. It is more accurate than other mathematical methods, information equality is faster, and maintenance costs are much lower. On the other hand, the equipment used in such systems must also meet high performance requirements. To achieve high speeds, parallel algorithms were developed using OpenMP and MPI technologies and implemented in the architecture of multi-core processors. A mathematical method for the parallel calculation of the coefficients of a cubic spline has been developed and a parallel signal processing algorithm has been developed on its basis. As an example, parallelization is a computation during seismic signal processing. The main indicators of efficiency and acceleration of the parallel algorithm were compared with the sequential algorithm. Explained the relevance of the use of parallel numerical systems, described the main approaches to the distribution of processes and methods of data processing, described the principles of parallel programming technology, studied the basic parameters of parallel algorithms for the initial calculation of the numerical value of cubic spline. The parallel algorithm considered for constructing the cubic spline of defect 1 as p - > n leads to the construction of a local cubic spline on each grid interval ω.\",\"PeriodicalId\":136491,\"journal\":{\"name\":\"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT50176.2020.9368680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文探讨了利用三次样条计算并行数据压缩的可能性。例如,如何并行处理地震信号的数字处理已被考虑。对并行算法的主要性能指标与连续算法进行了比较。样条法是一种通用的信号处理工具。它比其他数学方法更准确,信息相等更快,维护成本低得多。另一方面,此类系统中使用的设备也必须满足高性能要求。为了实现高速度,采用OpenMP和MPI技术开发并行算法,并在多核处理器架构中实现。提出了一种三次样条系数并行计算的数学方法,并在此基础上提出了一种并行信号处理算法。例如,并行化是地震信号处理过程中的一种计算方法。比较了并行算法与顺序算法在效率和加速方面的主要指标。阐述了并行数值系统的相关应用,描述了过程分布的主要途径和数据处理的方法,描述了并行编程技术的原理,研究了初始计算三次样条数值的并行算法的基本参数。构造缺陷1为p - > n的三次样条的并行算法导致在每个网格区间ω上构造一个局部三次样条。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Algorithm For Constructing a Cubic Spline on Multi-Core Processors in a Cluster
The article explores the possibility of computing parallel data compression using cubic spline. For example, ways to parallel the process of digital processing of seismic signals have been considered. The main performance indicators of parallel algorithms have been compared with consecutive algorithms. Spline methods are a versatile signal processing tool. It is more accurate than other mathematical methods, information equality is faster, and maintenance costs are much lower. On the other hand, the equipment used in such systems must also meet high performance requirements. To achieve high speeds, parallel algorithms were developed using OpenMP and MPI technologies and implemented in the architecture of multi-core processors. A mathematical method for the parallel calculation of the coefficients of a cubic spline has been developed and a parallel signal processing algorithm has been developed on its basis. As an example, parallelization is a computation during seismic signal processing. The main indicators of efficiency and acceleration of the parallel algorithm were compared with the sequential algorithm. Explained the relevance of the use of parallel numerical systems, described the main approaches to the distribution of processes and methods of data processing, described the principles of parallel programming technology, studied the basic parameters of parallel algorithms for the initial calculation of the numerical value of cubic spline. The parallel algorithm considered for constructing the cubic spline of defect 1 as p - > n leads to the construction of a local cubic spline on each grid interval ω.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based open infrastructure for URL filtering in an Internet browser 2D Amplitude-Only Microwave Tomography Algorithm for Breast-Cancer Detection Information Extraction from Arabic Law Documents An Experimental Design Approach to Analyse the Performance of Island-Based Parallel Artificial Bee Colony Algorithm Automation Check Vulnerabilities Of Access Points Based On 802.11 Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1