Reihane Rahimilarki, David Zhiwei Gao, Nanlin Jin, Aihua Zhang
{"title":"时间序列深度学习故障检测及其在风电标杆中的应用","authors":"Reihane Rahimilarki, David Zhiwei Gao, Nanlin Jin, Aihua Zhang","doi":"10.1109/INDIN41052.2019.8972237","DOIUrl":null,"url":null,"abstract":"In this paper, a deep learning fault detection approach is proposed based on the convolutional neural network in order to cope with one class of faults in wind turbine systems. Fault detection is very vital in nowadays industries due to the fact that instantly detection can prevent waste of cost and time. Deep learning as one of the powerful approaches in machine learning is a promising method to identify and classify the intrigued problems, which are hard to solve by classical methods. In this case, less than 5% performance reduction in generator torque along with sensor noise, which is challenging to identify by an operator or classical diagnosis methods is studied. The proposed algorithm, which is evolved from convolutional neural network idea, is evaluated in simulation based on a 4.8 MW wind turbine benchmark and the accuracy of the results confirms the persuasive performance of the suggested approach.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Time-series Deep Learning Fault Detection with the Application of Wind Turbine Benchmark\",\"authors\":\"Reihane Rahimilarki, David Zhiwei Gao, Nanlin Jin, Aihua Zhang\",\"doi\":\"10.1109/INDIN41052.2019.8972237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a deep learning fault detection approach is proposed based on the convolutional neural network in order to cope with one class of faults in wind turbine systems. Fault detection is very vital in nowadays industries due to the fact that instantly detection can prevent waste of cost and time. Deep learning as one of the powerful approaches in machine learning is a promising method to identify and classify the intrigued problems, which are hard to solve by classical methods. In this case, less than 5% performance reduction in generator torque along with sensor noise, which is challenging to identify by an operator or classical diagnosis methods is studied. The proposed algorithm, which is evolved from convolutional neural network idea, is evaluated in simulation based on a 4.8 MW wind turbine benchmark and the accuracy of the results confirms the persuasive performance of the suggested approach.\",\"PeriodicalId\":260220,\"journal\":{\"name\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN41052.2019.8972237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-series Deep Learning Fault Detection with the Application of Wind Turbine Benchmark
In this paper, a deep learning fault detection approach is proposed based on the convolutional neural network in order to cope with one class of faults in wind turbine systems. Fault detection is very vital in nowadays industries due to the fact that instantly detection can prevent waste of cost and time. Deep learning as one of the powerful approaches in machine learning is a promising method to identify and classify the intrigued problems, which are hard to solve by classical methods. In this case, less than 5% performance reduction in generator torque along with sensor noise, which is challenging to identify by an operator or classical diagnosis methods is studied. The proposed algorithm, which is evolved from convolutional neural network idea, is evaluated in simulation based on a 4.8 MW wind turbine benchmark and the accuracy of the results confirms the persuasive performance of the suggested approach.