时间序列深度学习故障检测及其在风电标杆中的应用

Reihane Rahimilarki, David Zhiwei Gao, Nanlin Jin, Aihua Zhang
{"title":"时间序列深度学习故障检测及其在风电标杆中的应用","authors":"Reihane Rahimilarki, David Zhiwei Gao, Nanlin Jin, Aihua Zhang","doi":"10.1109/INDIN41052.2019.8972237","DOIUrl":null,"url":null,"abstract":"In this paper, a deep learning fault detection approach is proposed based on the convolutional neural network in order to cope with one class of faults in wind turbine systems. Fault detection is very vital in nowadays industries due to the fact that instantly detection can prevent waste of cost and time. Deep learning as one of the powerful approaches in machine learning is a promising method to identify and classify the intrigued problems, which are hard to solve by classical methods. In this case, less than 5% performance reduction in generator torque along with sensor noise, which is challenging to identify by an operator or classical diagnosis methods is studied. The proposed algorithm, which is evolved from convolutional neural network idea, is evaluated in simulation based on a 4.8 MW wind turbine benchmark and the accuracy of the results confirms the persuasive performance of the suggested approach.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Time-series Deep Learning Fault Detection with the Application of Wind Turbine Benchmark\",\"authors\":\"Reihane Rahimilarki, David Zhiwei Gao, Nanlin Jin, Aihua Zhang\",\"doi\":\"10.1109/INDIN41052.2019.8972237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a deep learning fault detection approach is proposed based on the convolutional neural network in order to cope with one class of faults in wind turbine systems. Fault detection is very vital in nowadays industries due to the fact that instantly detection can prevent waste of cost and time. Deep learning as one of the powerful approaches in machine learning is a promising method to identify and classify the intrigued problems, which are hard to solve by classical methods. In this case, less than 5% performance reduction in generator torque along with sensor noise, which is challenging to identify by an operator or classical diagnosis methods is studied. The proposed algorithm, which is evolved from convolutional neural network idea, is evaluated in simulation based on a 4.8 MW wind turbine benchmark and the accuracy of the results confirms the persuasive performance of the suggested approach.\",\"PeriodicalId\":260220,\"journal\":{\"name\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN41052.2019.8972237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对风力发电系统中的一类故障,提出了一种基于卷积神经网络的深度学习故障检测方法。故障检测在当今工业中非常重要,因为即时检测可以防止成本和时间的浪费。深度学习作为机器学习领域的一种强有力的方法,对经典方法难以解决的感兴趣问题进行识别和分类是一种很有前途的方法。在这种情况下,发电机转矩的性能下降小于5%,同时传感器噪声,这是操作员或经典诊断方法难以识别的。该算法由卷积神经网络思想演变而来,并在4.8 MW风力发电机组上进行了仿真评估,结果的准确性证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-series Deep Learning Fault Detection with the Application of Wind Turbine Benchmark
In this paper, a deep learning fault detection approach is proposed based on the convolutional neural network in order to cope with one class of faults in wind turbine systems. Fault detection is very vital in nowadays industries due to the fact that instantly detection can prevent waste of cost and time. Deep learning as one of the powerful approaches in machine learning is a promising method to identify and classify the intrigued problems, which are hard to solve by classical methods. In this case, less than 5% performance reduction in generator torque along with sensor noise, which is challenging to identify by an operator or classical diagnosis methods is studied. The proposed algorithm, which is evolved from convolutional neural network idea, is evaluated in simulation based on a 4.8 MW wind turbine benchmark and the accuracy of the results confirms the persuasive performance of the suggested approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin in Industry 4.0: Technologies, Applications and Challenges Using Multi-Agent Systems for Demand Response Aggregators: Analysis and Requirements for the Development Developing a Secure, Smart Microgrid Energy Market using Distributed Ledger Technologies An Intelligent Assistance System for Controlling Wind-Assisted Ship Propulsion Systems OPC UA Information Model and a Wrapper for IEC 61499 Runtimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1