可扩展SVC视频的压缩域复制检测

Christian Käs, H. Nicolas
{"title":"可扩展SVC视频的压缩域复制检测","authors":"Christian Käs, H. Nicolas","doi":"10.1109/CBMI.2009.26","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for compressed domain copy detection of scalable videos stored in a database. We analyze compressed H.264/SVC streams and form different scalable low-level and mid-level feature vectors that are robust to multiple transformations. The features are based on easily available information like the encoding bit rate over time and the motion vectors found in the stream. The focus of this paper lies on the scalability and robustness of the features. A combination of different descriptors is used to perform copy detection on a database containing scalable, SVC-coded High-Definition (HD) video clips.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Compressed Domain Copy Detection of Scalable SVC Videos\",\"authors\":\"Christian Käs, H. Nicolas\",\"doi\":\"10.1109/CBMI.2009.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach for compressed domain copy detection of scalable videos stored in a database. We analyze compressed H.264/SVC streams and form different scalable low-level and mid-level feature vectors that are robust to multiple transformations. The features are based on easily available information like the encoding bit rate over time and the motion vectors found in the stream. The focus of this paper lies on the scalability and robustness of the features. A combination of different descriptors is used to perform copy detection on a database containing scalable, SVC-coded High-Definition (HD) video clips.\",\"PeriodicalId\":417012,\"journal\":{\"name\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2009.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种新的压缩域复制检测方法,用于存储在数据库中的可扩展视频。我们分析了压缩后的H.264/SVC流,并形成了不同的可扩展的低级和中级特征向量,这些特征向量对多种转换具有鲁棒性。这些特征是基于容易获得的信息,如编码比特率随时间的变化和在流中发现的运动向量。本文的重点在于特征的可扩展性和鲁棒性。不同描述符的组合用于在包含可扩展的、svc编码的高清(HD)视频剪辑的数据库上执行复制检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressed Domain Copy Detection of Scalable SVC Videos
We propose a novel approach for compressed domain copy detection of scalable videos stored in a database. We analyze compressed H.264/SVC streams and form different scalable low-level and mid-level feature vectors that are robust to multiple transformations. The features are based on easily available information like the encoding bit rate over time and the motion vectors found in the stream. The focus of this paper lies on the scalability and robustness of the features. A combination of different descriptors is used to perform copy detection on a database containing scalable, SVC-coded High-Definition (HD) video clips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Vector Based Moving Object Detection and Tracking in the MPEG Compressed Domain A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification Monophony vs Polyphony: A New Method Based on Weibull Bivariate Models Kernel Discriminant Analysis Using Triangular Kernel for Semantic Scene Classification Biometric Responses to Music-Rich Segments in Films: The CDVPlex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1