一种估计前向默认强度的深度学习方法

Marc-Aurèle Divernois
{"title":"一种估计前向默认强度的深度学习方法","authors":"Marc-Aurèle Divernois","doi":"10.2139/ssrn.3657019","DOIUrl":null,"url":null,"abstract":"This paper proposes a machine learning approach to estimate physical forward default intensities. Default probabilities are computed using artificial neural networks to estimate the intensities of the inhomogeneous Poisson processes governing default process. The major contribution to previous literature is to allow the estimation of non-linear forward intensities by using neural networks instead of classical maximum likelihood estimation. The model specification allows an easy replication of previous literature using linear assumption and shows the improvement that can be achieved.","PeriodicalId":306152,"journal":{"name":"Risk Management eJournal","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning Approach to Estimate Forward Default Intensities\",\"authors\":\"Marc-Aurèle Divernois\",\"doi\":\"10.2139/ssrn.3657019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a machine learning approach to estimate physical forward default intensities. Default probabilities are computed using artificial neural networks to estimate the intensities of the inhomogeneous Poisson processes governing default process. The major contribution to previous literature is to allow the estimation of non-linear forward intensities by using neural networks instead of classical maximum likelihood estimation. The model specification allows an easy replication of previous literature using linear assumption and shows the improvement that can be achieved.\",\"PeriodicalId\":306152,\"journal\":{\"name\":\"Risk Management eJournal\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3657019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3657019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种机器学习方法来估计物理前向默认强度。使用人工神经网络计算违约概率,以估计控制违约过程的非齐次泊松过程的强度。先前文献的主要贡献是允许使用神经网络来估计非线性前向强度,而不是经典的极大似然估计。模型规范允许使用线性假设轻松复制以前的文献,并显示可以实现的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Approach to Estimate Forward Default Intensities
This paper proposes a machine learning approach to estimate physical forward default intensities. Default probabilities are computed using artificial neural networks to estimate the intensities of the inhomogeneous Poisson processes governing default process. The major contribution to previous literature is to allow the estimation of non-linear forward intensities by using neural networks instead of classical maximum likelihood estimation. The model specification allows an easy replication of previous literature using linear assumption and shows the improvement that can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Institutional Investors on Real Estate Risk Delta-Gamma Component VaR: Non-Linear Risk Decomposition for any Type of Funds Testing Factor Models in the Cross-Section Quantum Circuit Learning to Compute Option Prices and Their Sensitivities Put Option and Risk Level of Asset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1