利用基于nvm的高效混合缓存的集级写入非均匀性

Jianhua Li, Liang Shi, C. Xue, Chengmo Yang, Yinlong Xu
{"title":"利用基于nvm的高效混合缓存的集级写入非均匀性","authors":"Jianhua Li, Liang Shi, C. Xue, Chengmo Yang, Yinlong Xu","doi":"10.1109/ESTIMedia.2011.6088521","DOIUrl":null,"url":null,"abstract":"Hybrid cache architectures have been proposed to mitigate the increasing on-chip power dissipation through the exploitation of the emerging non-volatile memories (NVMs). To overcome the high energy and long latency associated with write operations of NVMs, a small SRAM is typically incorporated into the hybrid cache for accommodating write-intensive cache blocks. How to efficiently manage this SRAM and manipulate the write operations are crucial to the performance of the hybrid cache. In this paper, we first present our observation that the intensity of write operations on different cache sets is usually non-uniform for real applications, such as multimedia, multi-programmed, multithreaded applications. The previously proposed hybrid cache schemes can not efficiently and symmetrically utilize the small SRAM to accommodate such widely-existing non-uniform writes on cache sets. Based on this observation, we propose a novel hybrid cache design, Dual Associative Hybrid Cache (denoted as DAHYC), as well as the corresponding cache management policy. By organizing the SRAM blocks in the hybrid cache as a semi-independent set-associative cache, several hybrid cache sets can efficiently share and cooperatively utilize their SRAM blocks, instead of exclusively utilizing the SRAM blocks in each cache set in previous hybrid cache schemes, to boost power-efficiency. Through prudently manipulating the locality information of SRAM blocks in both the NVM sets and the SRAM sets, the proposed cache management policy also delivers high-performance. Experimental results show that, compared with previous works, the DAHYC can reduce the dynamic power of the hybrid cache by 24.8% on average and up to 54% for SPEC2000 INT benchmarks, while at the same time improving the performance of the hybrid cache by 1.16% on average.","PeriodicalId":180192,"journal":{"name":"2011 9th IEEE Symposium on Embedded Systems for Real-Time Multimedia","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Exploiting set-level write non-uniformity for energy-efficient NVM-based hybrid cache\",\"authors\":\"Jianhua Li, Liang Shi, C. Xue, Chengmo Yang, Yinlong Xu\",\"doi\":\"10.1109/ESTIMedia.2011.6088521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid cache architectures have been proposed to mitigate the increasing on-chip power dissipation through the exploitation of the emerging non-volatile memories (NVMs). To overcome the high energy and long latency associated with write operations of NVMs, a small SRAM is typically incorporated into the hybrid cache for accommodating write-intensive cache blocks. How to efficiently manage this SRAM and manipulate the write operations are crucial to the performance of the hybrid cache. In this paper, we first present our observation that the intensity of write operations on different cache sets is usually non-uniform for real applications, such as multimedia, multi-programmed, multithreaded applications. The previously proposed hybrid cache schemes can not efficiently and symmetrically utilize the small SRAM to accommodate such widely-existing non-uniform writes on cache sets. Based on this observation, we propose a novel hybrid cache design, Dual Associative Hybrid Cache (denoted as DAHYC), as well as the corresponding cache management policy. By organizing the SRAM blocks in the hybrid cache as a semi-independent set-associative cache, several hybrid cache sets can efficiently share and cooperatively utilize their SRAM blocks, instead of exclusively utilizing the SRAM blocks in each cache set in previous hybrid cache schemes, to boost power-efficiency. Through prudently manipulating the locality information of SRAM blocks in both the NVM sets and the SRAM sets, the proposed cache management policy also delivers high-performance. Experimental results show that, compared with previous works, the DAHYC can reduce the dynamic power of the hybrid cache by 24.8% on average and up to 54% for SPEC2000 INT benchmarks, while at the same time improving the performance of the hybrid cache by 1.16% on average.\",\"PeriodicalId\":180192,\"journal\":{\"name\":\"2011 9th IEEE Symposium on Embedded Systems for Real-Time Multimedia\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 9th IEEE Symposium on Embedded Systems for Real-Time Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTIMedia.2011.6088521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th IEEE Symposium on Embedded Systems for Real-Time Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTIMedia.2011.6088521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

混合高速缓存架构已经被提出,通过利用新兴的非易失性存储器(NVMs)来缓解芯片上不断增加的功耗。为了克服与nvm写操作相关的高能量和长延迟,通常在混合缓存中加入一个小的SRAM,以容纳写密集型缓存块。如何有效地管理SRAM和操作写操作对混合高速缓存的性能至关重要。在本文中,我们首先提出了我们的观察,即对于实际应用程序(如多媒体、多编程、多线程应用程序),不同缓存集上写操作的强度通常是不一致的。以前提出的混合缓存方案不能有效和对称地利用小的SRAM来适应这种广泛存在的对缓存集的不均匀写。基于此,我们提出了一种新的混合缓存设计,即双关联混合缓存(Dual Associative hybrid cache,简称DAHYC),以及相应的缓存管理策略。通过将混合缓存中的SRAM块组织为半独立的集关联缓存,多个混合缓存集可以有效地共享和协作利用它们的SRAM块,而不是在以前的混合缓存方案中单独利用每个缓存集中的SRAM块,从而提高了功率效率。通过谨慎地处理NVM集和SRAM集中的SRAM块的位置信息,所提出的缓存管理策略也提供了高性能。实验结果表明,与以往的工作相比,DAHYC可将混合缓存的动态功耗平均降低24.8%,在SPEC2000 INT基准测试中可降低54%,同时将混合缓存的性能平均提高1.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting set-level write non-uniformity for energy-efficient NVM-based hybrid cache
Hybrid cache architectures have been proposed to mitigate the increasing on-chip power dissipation through the exploitation of the emerging non-volatile memories (NVMs). To overcome the high energy and long latency associated with write operations of NVMs, a small SRAM is typically incorporated into the hybrid cache for accommodating write-intensive cache blocks. How to efficiently manage this SRAM and manipulate the write operations are crucial to the performance of the hybrid cache. In this paper, we first present our observation that the intensity of write operations on different cache sets is usually non-uniform for real applications, such as multimedia, multi-programmed, multithreaded applications. The previously proposed hybrid cache schemes can not efficiently and symmetrically utilize the small SRAM to accommodate such widely-existing non-uniform writes on cache sets. Based on this observation, we propose a novel hybrid cache design, Dual Associative Hybrid Cache (denoted as DAHYC), as well as the corresponding cache management policy. By organizing the SRAM blocks in the hybrid cache as a semi-independent set-associative cache, several hybrid cache sets can efficiently share and cooperatively utilize their SRAM blocks, instead of exclusively utilizing the SRAM blocks in each cache set in previous hybrid cache schemes, to boost power-efficiency. Through prudently manipulating the locality information of SRAM blocks in both the NVM sets and the SRAM sets, the proposed cache management policy also delivers high-performance. Experimental results show that, compared with previous works, the DAHYC can reduce the dynamic power of the hybrid cache by 24.8% on average and up to 54% for SPEC2000 INT benchmarks, while at the same time improving the performance of the hybrid cache by 1.16% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of scheduling heuristics for jitter reduction of real-time streaming applications on multi-core general purpose hardware Model checking a SystemC/TLM design of the AMBA AHB protocol Multi-ASIP based parallel and scalable implementation of motion estimation kernel for high definition videos On the management of multichannel architectures of solid-state disks System perspective on embedded multimedia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1