{"title":"基于seig电池存储的独立三相四线RECS的单回路电压和频率控制方案","authors":"P. Chauhan, J. K. Chatterjee","doi":"10.1109/ICPES.2011.6156624","DOIUrl":null,"url":null,"abstract":"Single control loop based two schemes for regulation of voltage and frequency of Self Excited Induction Generator (SEIG) based stand-alone 3-phase 4-wire renewable energy conversion system (RECS), under perturbations in speed and balanced/unbalanced load are presented. For the regulation, a Generalized Impedance Controller (GIC), a PWM voltage source converter having battery storage at its dc bus, controls reactive and active power flow in each phase of the SEIG using, (i) 3-phase stator voltage feedback only and (ii) 3-phase PCC voltage feedback only. The SEIG is operated with isolated neutral, while load and the GIC neutrals are interconnected. A mathematical model of integrated system having 3-phase 4-wire configuration of SEIG-load in closed-loop with the GIC has been developed and simulated in MATLAB/Simulink, with each control scheme, under variety of source and load perturbations. The novel feature of these schemes is successful regulation of both the amplitude and frequency of SEIG terminal voltage using only voltage feedback loop and no frequency feedback.","PeriodicalId":158903,"journal":{"name":"2011 International Conference on Power and Energy Systems","volume":"330 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Single-loop voltage and frequency control schemes for SEIG-battery storage based stand-alone three-phase four-wire RECS\",\"authors\":\"P. Chauhan, J. K. Chatterjee\",\"doi\":\"10.1109/ICPES.2011.6156624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single control loop based two schemes for regulation of voltage and frequency of Self Excited Induction Generator (SEIG) based stand-alone 3-phase 4-wire renewable energy conversion system (RECS), under perturbations in speed and balanced/unbalanced load are presented. For the regulation, a Generalized Impedance Controller (GIC), a PWM voltage source converter having battery storage at its dc bus, controls reactive and active power flow in each phase of the SEIG using, (i) 3-phase stator voltage feedback only and (ii) 3-phase PCC voltage feedback only. The SEIG is operated with isolated neutral, while load and the GIC neutrals are interconnected. A mathematical model of integrated system having 3-phase 4-wire configuration of SEIG-load in closed-loop with the GIC has been developed and simulated in MATLAB/Simulink, with each control scheme, under variety of source and load perturbations. The novel feature of these schemes is successful regulation of both the amplitude and frequency of SEIG terminal voltage using only voltage feedback loop and no frequency feedback.\",\"PeriodicalId\":158903,\"journal\":{\"name\":\"2011 International Conference on Power and Energy Systems\",\"volume\":\"330 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPES.2011.6156624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPES.2011.6156624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-loop voltage and frequency control schemes for SEIG-battery storage based stand-alone three-phase four-wire RECS
Single control loop based two schemes for regulation of voltage and frequency of Self Excited Induction Generator (SEIG) based stand-alone 3-phase 4-wire renewable energy conversion system (RECS), under perturbations in speed and balanced/unbalanced load are presented. For the regulation, a Generalized Impedance Controller (GIC), a PWM voltage source converter having battery storage at its dc bus, controls reactive and active power flow in each phase of the SEIG using, (i) 3-phase stator voltage feedback only and (ii) 3-phase PCC voltage feedback only. The SEIG is operated with isolated neutral, while load and the GIC neutrals are interconnected. A mathematical model of integrated system having 3-phase 4-wire configuration of SEIG-load in closed-loop with the GIC has been developed and simulated in MATLAB/Simulink, with each control scheme, under variety of source and load perturbations. The novel feature of these schemes is successful regulation of both the amplitude and frequency of SEIG terminal voltage using only voltage feedback loop and no frequency feedback.