结构正则化乘法器的随机交替方向方法

Taiji Suzuki
{"title":"结构正则化乘法器的随机交替方向方法","authors":"Taiji Suzuki","doi":"10.5183/JJSCS.1502004_218","DOIUrl":null,"url":null,"abstract":"In this paper, we present stochastic optimization variants of the alternating direction method of multipliers (ADMM). ADMM is a useful method to solve a regularized risk minimization problem where the regularization term is complicated and not easily dealt with in an ordinary manner. For example, structured regularization is one of the typical applications of such regularization in which ADMM is effective. It includes group lasso regularization, low rank tensor regularization, and fused lasso regularization. Since ADMM is a general method and has wide applications, it is intensively studied and refined these days. However, ADMM is not suited to optimization problems with huge data. To resolve this problem, online stochastic optimization variants and a batch stochastic optimization variant of ADMM are presented. All the presented methods can be easily implemented and have wide applications. Moreover, the theoretical guarantees of the methods are given.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STOCHASTIC ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR STRUCTURED REGULARIZATION\",\"authors\":\"Taiji Suzuki\",\"doi\":\"10.5183/JJSCS.1502004_218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present stochastic optimization variants of the alternating direction method of multipliers (ADMM). ADMM is a useful method to solve a regularized risk minimization problem where the regularization term is complicated and not easily dealt with in an ordinary manner. For example, structured regularization is one of the typical applications of such regularization in which ADMM is effective. It includes group lasso regularization, low rank tensor regularization, and fused lasso regularization. Since ADMM is a general method and has wide applications, it is intensively studied and refined these days. However, ADMM is not suited to optimization problems with huge data. To resolve this problem, online stochastic optimization variants and a batch stochastic optimization variant of ADMM are presented. All the presented methods can be easily implemented and have wide applications. Moreover, the theoretical guarantees of the methods are given.\",\"PeriodicalId\":338719,\"journal\":{\"name\":\"Journal of the Japanese Society of Computational Statistics\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japanese Society of Computational Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5183/JJSCS.1502004_218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1502004_218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了乘法器交替方向法(ADMM)的随机优化变体。对于正则化项复杂且不易用常规方法处理的正则化风险最小化问题,ADMM是一种有用的方法。例如,结构化正则化是这种正则化的典型应用之一,其中ADMM是有效的。它包括群拉索正则化、低秩张量正则化和融合拉索正则化。由于ADMM是一种通用的方法,具有广泛的应用,因此近年来对其进行了深入的研究和完善。然而,ADMM并不适用于大数据的优化问题。为了解决这一问题,提出了在线随机优化变量和批量随机优化变量。所提出的方法易于实现,具有广泛的应用前景。并给出了方法的理论保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STOCHASTIC ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR STRUCTURED REGULARIZATION
In this paper, we present stochastic optimization variants of the alternating direction method of multipliers (ADMM). ADMM is a useful method to solve a regularized risk minimization problem where the regularization term is complicated and not easily dealt with in an ordinary manner. For example, structured regularization is one of the typical applications of such regularization in which ADMM is effective. It includes group lasso regularization, low rank tensor regularization, and fused lasso regularization. Since ADMM is a general method and has wide applications, it is intensively studied and refined these days. However, ADMM is not suited to optimization problems with huge data. To resolve this problem, online stochastic optimization variants and a batch stochastic optimization variant of ADMM are presented. All the presented methods can be easily implemented and have wide applications. Moreover, the theoretical guarantees of the methods are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ENHANCING POWER OF SCORE TESTS FOR REGRESSION MODELS VIA FISHER TRANSFORMATION ANNOUNCEMENT: ON PUBLICATION OF THE JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE DISTRIBUTION OF THE LARGEST EIGENVALUE OF AN ELLIPTICAL WISHART MATRIX AND ITS SIMULATION COMMENT: ON CLOSING OF ENGLISH JOURNAL OF JSCS AND THE BIRTH OF NEW JOURNAL JJSD INFERENCE FOR THE EXTENT PARAMETER OF DAMAGE BY TSUNAMI WITH POINCARE CONES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1