智能交通分析:从监测到控制

Sheng Wang, Yunzhuang Shen, Z. Bao, X. Qin
{"title":"智能交通分析:从监测到控制","authors":"Sheng Wang, Yunzhuang Shen, Z. Bao, X. Qin","doi":"10.1145/3289600.3290615","DOIUrl":null,"url":null,"abstract":"In this paper, we would like to demonstrate an intelligent traffic analytics system called T4, which enables intelligent analytics over real-time and historical trajectories from vehicles. At the front end, we visualize the current traffic flow and result trajectories of different types of queries, as well as the histograms of traffic flow and traffic lights. At the back end, T4 is able to support multiple types of common queries over trajectories, with compact storage, efficient index and fast pruning algorithms. The output of those queries can be used for further monitoring and analytics purposes. Moreover, we train the deep models for traffic flow prediction and traffic light control to reduce traffic congestion. A preliminary version of T4 is available at https://sites.google.com/site/shengwangcs/torch.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Intelligent Traffic Analytics: From Monitoring to Controlling\",\"authors\":\"Sheng Wang, Yunzhuang Shen, Z. Bao, X. Qin\",\"doi\":\"10.1145/3289600.3290615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we would like to demonstrate an intelligent traffic analytics system called T4, which enables intelligent analytics over real-time and historical trajectories from vehicles. At the front end, we visualize the current traffic flow and result trajectories of different types of queries, as well as the histograms of traffic flow and traffic lights. At the back end, T4 is able to support multiple types of common queries over trajectories, with compact storage, efficient index and fast pruning algorithms. The output of those queries can be used for further monitoring and analytics purposes. Moreover, we train the deep models for traffic flow prediction and traffic light control to reduce traffic congestion. A preliminary version of T4 is available at https://sites.google.com/site/shengwangcs/torch.\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3290615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3290615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们想展示一个名为T4的智能交通分析系统,它可以对车辆的实时和历史轨迹进行智能分析。在前端,我们可视化当前的交通流量和不同类型查询的结果轨迹,以及交通流量和交通灯的直方图。在后端,T4能够支持多种类型的轨迹常见查询,具有紧凑的存储,高效的索引和快速修剪算法。这些查询的输出可用于进一步的监视和分析目的。此外,我们还训练了交通流预测和交通灯控制的深度模型,以减少交通拥堵。T4的初步版本可在https://sites.google.com/site/shengwangcs/torch上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Traffic Analytics: From Monitoring to Controlling
In this paper, we would like to demonstrate an intelligent traffic analytics system called T4, which enables intelligent analytics over real-time and historical trajectories from vehicles. At the front end, we visualize the current traffic flow and result trajectories of different types of queries, as well as the histograms of traffic flow and traffic lights. At the back end, T4 is able to support multiple types of common queries over trajectories, with compact storage, efficient index and fast pruning algorithms. The output of those queries can be used for further monitoring and analytics purposes. Moreover, we train the deep models for traffic flow prediction and traffic light control to reduce traffic congestion. A preliminary version of T4 is available at https://sites.google.com/site/shengwangcs/torch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DAPA: The WSDM 2019 Workshop on Deep Matching in Practical Applications Solving the Sparsity Problem in Recommendations via Cross-Domain Item Embedding Based on Co-Clustering More Than Just Words: Modeling Non-Textual Characteristics of Podcasts Pleasant Route Suggestion based on Color and Object Rates Session details: Session 6: Networks and Social Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1