{"title":"基于深度强化学习的自适应360度视频流视场联合预测","authors":"Yuanhong Zhang, Zhiwen Wang, Junquan Liu, Haipeng Du, Qinghua Zheng, Weizhan Zhang","doi":"10.1109/ISCC55528.2022.9913007","DOIUrl":null,"url":null,"abstract":"With the development of 360-degree video and HTTP adaptive streaming (HAS), tile-based adaptive 360-degree video streaming has become a promising paradigm for reducing the bandwidth consumption of delivering the panoramic video content. However, there are two main challenges for the adaptive 360-degree video streaming, accurate long-term prediction of the future field of view (Fo V) and optimal adaptive bitrate (ABR) transmission strategy. In this paper, we propose an attention-based multi-user Fo V joint prediction approach to improve the accuracy, establishing a probability model of watching video tiles for users and applying Long Short-Term Memory (LSTM) network and DBSCAN clustering method. Furthermore, we present an adaptive 360-degree video streaming approach based on deep reinforcement learning (DRL), using A3C algorithm to optimize the QoE. The real-world trace-driven experiments demonstrate that our approach achieves about 8 % gains on user Fo V prediction precision and an increase at least 20 % on user QoE compared with the benchmarks.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Reinforcement Learning Based Adaptive 360-degree Video Streaming with Field of View Joint Prediction\",\"authors\":\"Yuanhong Zhang, Zhiwen Wang, Junquan Liu, Haipeng Du, Qinghua Zheng, Weizhan Zhang\",\"doi\":\"10.1109/ISCC55528.2022.9913007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of 360-degree video and HTTP adaptive streaming (HAS), tile-based adaptive 360-degree video streaming has become a promising paradigm for reducing the bandwidth consumption of delivering the panoramic video content. However, there are two main challenges for the adaptive 360-degree video streaming, accurate long-term prediction of the future field of view (Fo V) and optimal adaptive bitrate (ABR) transmission strategy. In this paper, we propose an attention-based multi-user Fo V joint prediction approach to improve the accuracy, establishing a probability model of watching video tiles for users and applying Long Short-Term Memory (LSTM) network and DBSCAN clustering method. Furthermore, we present an adaptive 360-degree video streaming approach based on deep reinforcement learning (DRL), using A3C algorithm to optimize the QoE. The real-world trace-driven experiments demonstrate that our approach achieves about 8 % gains on user Fo V prediction precision and an increase at least 20 % on user QoE compared with the benchmarks.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9913007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9913007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Reinforcement Learning Based Adaptive 360-degree Video Streaming with Field of View Joint Prediction
With the development of 360-degree video and HTTP adaptive streaming (HAS), tile-based adaptive 360-degree video streaming has become a promising paradigm for reducing the bandwidth consumption of delivering the panoramic video content. However, there are two main challenges for the adaptive 360-degree video streaming, accurate long-term prediction of the future field of view (Fo V) and optimal adaptive bitrate (ABR) transmission strategy. In this paper, we propose an attention-based multi-user Fo V joint prediction approach to improve the accuracy, establishing a probability model of watching video tiles for users and applying Long Short-Term Memory (LSTM) network and DBSCAN clustering method. Furthermore, we present an adaptive 360-degree video streaming approach based on deep reinforcement learning (DRL), using A3C algorithm to optimize the QoE. The real-world trace-driven experiments demonstrate that our approach achieves about 8 % gains on user Fo V prediction precision and an increase at least 20 % on user QoE compared with the benchmarks.