{"title":"如何解读西格斯-蒂瑟兰-格伯-爱因斯坦公式和索德纳-爱因斯坦公式?","authors":"J. Stávek","doi":"10.24018/ejphysics.2022.4.1.143","DOIUrl":null,"url":null,"abstract":"The famous Seegers-Tisserand-Gerber-Einstein Formula describing correctly the Mercury perihelion advance passed through hands of many scholars who tried to decipher the physical meaning of the perturbation factor Ω introduced by Carl Seegers in 1864. Based on the Gauss´s law for gravity we have newly interpreted this perturbation factor Ω as the active solid angle of the Solar gravitational field Ω = 3 steradians. We have inserted this model of the active solid angle of the Solar gravitational field the famous Soldner-Einstein Formula describing the light deflection in the vicinity of the Sun with 1 ≤ Ω ≤ 8. The enormous scatter of experimental data of the light deflections measured during the Solar eclipses was interpreted as the quantum jumps of the deflection angle with the quantum jump 0”.44. All known existing data on the light deflection taken during the last hundred years were depicted into the graphs. In some cases we have discovered these quantum jumps of the deflection angle during the individual runs of the Solar eclipse experiment. We propose to reanalyze all historical data taken for individual stars and to search for a hidden structure in these data. Moreover, we want to initiate new experimental activities for the coming Solar eclipses in order to collect more precise data that might guide us towards the model of quantum gravity.","PeriodicalId":292629,"journal":{"name":"European Journal of Applied Physics","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How to Decipher the Seegers-Tisserand-Gerber-Einstein Formula and the Soldner-Einstein Formula?\",\"authors\":\"J. Stávek\",\"doi\":\"10.24018/ejphysics.2022.4.1.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The famous Seegers-Tisserand-Gerber-Einstein Formula describing correctly the Mercury perihelion advance passed through hands of many scholars who tried to decipher the physical meaning of the perturbation factor Ω introduced by Carl Seegers in 1864. Based on the Gauss´s law for gravity we have newly interpreted this perturbation factor Ω as the active solid angle of the Solar gravitational field Ω = 3 steradians. We have inserted this model of the active solid angle of the Solar gravitational field the famous Soldner-Einstein Formula describing the light deflection in the vicinity of the Sun with 1 ≤ Ω ≤ 8. The enormous scatter of experimental data of the light deflections measured during the Solar eclipses was interpreted as the quantum jumps of the deflection angle with the quantum jump 0”.44. All known existing data on the light deflection taken during the last hundred years were depicted into the graphs. In some cases we have discovered these quantum jumps of the deflection angle during the individual runs of the Solar eclipse experiment. We propose to reanalyze all historical data taken for individual stars and to search for a hidden structure in these data. Moreover, we want to initiate new experimental activities for the coming Solar eclipses in order to collect more precise data that might guide us towards the model of quantum gravity.\",\"PeriodicalId\":292629,\"journal\":{\"name\":\"European Journal of Applied Physics\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejphysics.2022.4.1.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejphysics.2022.4.1.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to Decipher the Seegers-Tisserand-Gerber-Einstein Formula and the Soldner-Einstein Formula?
The famous Seegers-Tisserand-Gerber-Einstein Formula describing correctly the Mercury perihelion advance passed through hands of many scholars who tried to decipher the physical meaning of the perturbation factor Ω introduced by Carl Seegers in 1864. Based on the Gauss´s law for gravity we have newly interpreted this perturbation factor Ω as the active solid angle of the Solar gravitational field Ω = 3 steradians. We have inserted this model of the active solid angle of the Solar gravitational field the famous Soldner-Einstein Formula describing the light deflection in the vicinity of the Sun with 1 ≤ Ω ≤ 8. The enormous scatter of experimental data of the light deflections measured during the Solar eclipses was interpreted as the quantum jumps of the deflection angle with the quantum jump 0”.44. All known existing data on the light deflection taken during the last hundred years were depicted into the graphs. In some cases we have discovered these quantum jumps of the deflection angle during the individual runs of the Solar eclipse experiment. We propose to reanalyze all historical data taken for individual stars and to search for a hidden structure in these data. Moreover, we want to initiate new experimental activities for the coming Solar eclipses in order to collect more precise data that might guide us towards the model of quantum gravity.