新的DVB-T信号鲁棒感知方法

Chunyi Song, Mohammad Azizur Rahman, H. Harada
{"title":"新的DVB-T信号鲁棒感知方法","authors":"Chunyi Song, Mohammad Azizur Rahman, H. Harada","doi":"10.4108/ICST.CROWNCOM.2011.245866","DOIUrl":null,"url":null,"abstract":"The regulations for operation in the TV white space (TVWS) have been developed and released in USA and UK It is believed that the ongoing TVWS related standardization projects, such as IEEE P802.19.1, IEEE P802.11af and IEEE P802.22, will encourage the regulation development in more countries and regions. Current regulations commonly require the TV band device (TVBD) or the sensing only TVBD to be capable of detecting incumbent TV signals of very low power level within a short time. To fulfill the strict requirements on both of sensitivity and sensing time while keeping the hardware implementation cost below a desired level, we propose two new sensing methods for DTV signals of DVB-T standard: the optimal one requires time synchronization and is therefore called The Proposed_Syn while the sub-optimal one requires no time synchronization and is called The Proposed_Asyn. Both computer simulation results and hardware testing results are shown in this paper. Simulation results show that for achieving a goal of high detection probability (≥90%) and low false alarm probability (≤1%) at a very low SNR (=−20dB) in AWGN channel, in comparison with conventional sensing methods, The Proposed_Syn reduces sensing time by 50% and both proposed methods can significantly reduce hardware implementation cost by potentially reducing multiplexer number more than 99%. Hardware sensing prototype testing results have further verified the improved performance by using the proposed sensing methods.","PeriodicalId":249175,"journal":{"name":"2011 6th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New robust sensing methods for DVB-T signals\",\"authors\":\"Chunyi Song, Mohammad Azizur Rahman, H. Harada\",\"doi\":\"10.4108/ICST.CROWNCOM.2011.245866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regulations for operation in the TV white space (TVWS) have been developed and released in USA and UK It is believed that the ongoing TVWS related standardization projects, such as IEEE P802.19.1, IEEE P802.11af and IEEE P802.22, will encourage the regulation development in more countries and regions. Current regulations commonly require the TV band device (TVBD) or the sensing only TVBD to be capable of detecting incumbent TV signals of very low power level within a short time. To fulfill the strict requirements on both of sensitivity and sensing time while keeping the hardware implementation cost below a desired level, we propose two new sensing methods for DTV signals of DVB-T standard: the optimal one requires time synchronization and is therefore called The Proposed_Syn while the sub-optimal one requires no time synchronization and is called The Proposed_Asyn. Both computer simulation results and hardware testing results are shown in this paper. Simulation results show that for achieving a goal of high detection probability (≥90%) and low false alarm probability (≤1%) at a very low SNR (=−20dB) in AWGN channel, in comparison with conventional sensing methods, The Proposed_Syn reduces sensing time by 50% and both proposed methods can significantly reduce hardware implementation cost by potentially reducing multiplexer number more than 99%. Hardware sensing prototype testing results have further verified the improved performance by using the proposed sensing methods.\",\"PeriodicalId\":249175,\"journal\":{\"name\":\"2011 6th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.CROWNCOM.2011.245866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.CROWNCOM.2011.245866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

美国和英国已经制定并发布了电视白色空间(TVWS)的运行规则,相信正在进行的与TVWS相关的标准化项目,如IEEE P802.19.1、IEEE P802.11af和IEEE P802.22,将促进更多国家和地区的规则制定。现行法规通常要求电视频带设备(TVBD)或仅感测的TVBD能够在短时间内检测到极低功率电平的在位电视信号。为了满足对灵敏度和感知时间的严格要求,同时保持硬件实现成本在理想水平以下,我们提出了两种新的DVB-T标准数字电视信号感知方法:最优的方法需要时间同步,因此称为the proposd_syn;次优的方法不需要时间同步,因此称为the proposd_asynn。文中给出了计算机仿真结果和硬件测试结果。仿真结果表明,为了在极低的信噪比(= - 20dB)下实现AWGN信道的高检测概率(≥90%)和低虚报警概率(≤1%)的目标,与传统传感方法相比,proposd_syn传感时间缩短了50%,并且两种方法都可以通过减少99%以上的复用器数量来显著降低硬件实现成本。硬件传感样机测试结果进一步验证了采用所提传感方法所提高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New robust sensing methods for DVB-T signals
The regulations for operation in the TV white space (TVWS) have been developed and released in USA and UK It is believed that the ongoing TVWS related standardization projects, such as IEEE P802.19.1, IEEE P802.11af and IEEE P802.22, will encourage the regulation development in more countries and regions. Current regulations commonly require the TV band device (TVBD) or the sensing only TVBD to be capable of detecting incumbent TV signals of very low power level within a short time. To fulfill the strict requirements on both of sensitivity and sensing time while keeping the hardware implementation cost below a desired level, we propose two new sensing methods for DTV signals of DVB-T standard: the optimal one requires time synchronization and is therefore called The Proposed_Syn while the sub-optimal one requires no time synchronization and is called The Proposed_Asyn. Both computer simulation results and hardware testing results are shown in this paper. Simulation results show that for achieving a goal of high detection probability (≥90%) and low false alarm probability (≤1%) at a very low SNR (=−20dB) in AWGN channel, in comparison with conventional sensing methods, The Proposed_Syn reduces sensing time by 50% and both proposed methods can significantly reduce hardware implementation cost by potentially reducing multiplexer number more than 99%. Hardware sensing prototype testing results have further verified the improved performance by using the proposed sensing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Signal separation and reconstruction method for simultaneously received multi-system signals in a unified wireless system Multitaper spectrum sensing of OFDMA signals in frequency selective fading environment The capacity of cognitive ad-hoc networks with carrier sensing errors An efficient routing protocol on a Dynamic Cluster-based Sensor Network Spectrum sharing with interference coordination under outage probability constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1