犯罪预测机器学习中的数据驱动模型

Z. Wawrzyniak, S. Jankowski, Eliza Szczechla, Z. Szymanski, R. Pytlak, P. Michalak, G. Borowik
{"title":"犯罪预测机器学习中的数据驱动模型","authors":"Z. Wawrzyniak, S. Jankowski, Eliza Szczechla, Z. Szymanski, R. Pytlak, P. Michalak, G. Borowik","doi":"10.1109/ICSENG.2018.8638230","DOIUrl":null,"url":null,"abstract":"Prediction of future events over time is associated with a sequence of time series observational samples and other exogenous data. Different approaches connected with statistical learning techniques result in predictive databased models. The paper presents an attempt to develop techniques for predictive data-based modeling based on machine learning data-driven approaches. To reach a good level of prediction we use a deep learning architecture based on artificial neural network (ANN). The neural network (NN) structure for crime prediction and the appropriate inputs for crime prediction is performed through: Gram-Schmidt orthogonalization (GS) for the selection of network inputs and virtual leave-one-out test (VLOO) for the selection of the optimal number of hidden neurons. Spatiotemporal distribution of the hot-spots is conducted and a methodology is developed for short-term crime forecasting using the long short-term memory (LSTM) recurrent neural networks (RNN) and convolutional neural networks (CNN).","PeriodicalId":356324,"journal":{"name":"2018 26th International Conference on Systems Engineering (ICSEng)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Data-driven models in machine learning for crime prediction\",\"authors\":\"Z. Wawrzyniak, S. Jankowski, Eliza Szczechla, Z. Szymanski, R. Pytlak, P. Michalak, G. Borowik\",\"doi\":\"10.1109/ICSENG.2018.8638230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of future events over time is associated with a sequence of time series observational samples and other exogenous data. Different approaches connected with statistical learning techniques result in predictive databased models. The paper presents an attempt to develop techniques for predictive data-based modeling based on machine learning data-driven approaches. To reach a good level of prediction we use a deep learning architecture based on artificial neural network (ANN). The neural network (NN) structure for crime prediction and the appropriate inputs for crime prediction is performed through: Gram-Schmidt orthogonalization (GS) for the selection of network inputs and virtual leave-one-out test (VLOO) for the selection of the optimal number of hidden neurons. Spatiotemporal distribution of the hot-spots is conducted and a methodology is developed for short-term crime forecasting using the long short-term memory (LSTM) recurrent neural networks (RNN) and convolutional neural networks (CNN).\",\"PeriodicalId\":356324,\"journal\":{\"name\":\"2018 26th International Conference on Systems Engineering (ICSEng)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th International Conference on Systems Engineering (ICSEng)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENG.2018.8638230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Systems Engineering (ICSEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENG.2018.8638230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

随着时间的推移对未来事件的预测与一系列时间序列观测样本和其他外源数据有关。与统计学习技术相结合的不同方法产生了预测数据库模型。本文提出了一种基于机器学习数据驱动方法开发预测数据建模技术的尝试。为了达到良好的预测水平,我们使用了基于人工神经网络(ANN)的深度学习架构。通过Gram-Schmidt正交化(GS)选择网络输入,虚拟留一测试(VLOO)选择隐藏神经元的最优数量,实现犯罪预测的神经网络结构和犯罪预测的适当输入。利用长短期记忆(LSTM)递归神经网络(RNN)和卷积神经网络(CNN)对犯罪热点进行了时空分布分析,建立了短期犯罪预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven models in machine learning for crime prediction
Prediction of future events over time is associated with a sequence of time series observational samples and other exogenous data. Different approaches connected with statistical learning techniques result in predictive databased models. The paper presents an attempt to develop techniques for predictive data-based modeling based on machine learning data-driven approaches. To reach a good level of prediction we use a deep learning architecture based on artificial neural network (ANN). The neural network (NN) structure for crime prediction and the appropriate inputs for crime prediction is performed through: Gram-Schmidt orthogonalization (GS) for the selection of network inputs and virtual leave-one-out test (VLOO) for the selection of the optimal number of hidden neurons. Spatiotemporal distribution of the hot-spots is conducted and a methodology is developed for short-term crime forecasting using the long short-term memory (LSTM) recurrent neural networks (RNN) and convolutional neural networks (CNN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Essential Skill of Enterprise Architect Practitioners for Digital Era Power usage optimization in multi-UAV common-mission cooperative UAS systems A New Novel Improved Technique for PAPR Reduction in OFDM System Performance Investigation of a PV Emulator Using Current Source and Diode String ICSEng 2018 Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1