基于卷积神经网络的HEVC低复杂度内编码算法

Takafumi Katayama, Kazuki Kuroda, Wen Shi, Tian Song, T. Shimamoto
{"title":"基于卷积神经网络的HEVC低复杂度内编码算法","authors":"Takafumi Katayama, Kazuki Kuroda, Wen Shi, Tian Song, T. Shimamoto","doi":"10.1109/INFOCT.2018.8356852","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast coding unit (CU) size decision algorithm for high efficiency video coding (HEVC) based on convolutional neural network. The proposed fast algorithm contributes to decrease no less than two CU partition modes in each coding tree unit for full rate-distortion optimization processing, thereby reducing the encoder hardware complexity. Moreover, our algorithm use only texture information and it does not depend on the correlations among CU depths or spatially nearby CUs. It is friendly to the parallel processing and it can improve the pipeline process of RDO. The proposed algorithm is implemented in the reference software of HEVC (HM16.7). The simulation results show that the proposed algorithm can achieve over 67.3% computation complexity reduction comparing to the original HEVC algorithm.","PeriodicalId":376443,"journal":{"name":"2018 International Conference on Information and Computer Technologies (ICICT)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Low-complexity intra coding algorithm based on convolutional neural network for HEVC\",\"authors\":\"Takafumi Katayama, Kazuki Kuroda, Wen Shi, Tian Song, T. Shimamoto\",\"doi\":\"10.1109/INFOCT.2018.8356852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fast coding unit (CU) size decision algorithm for high efficiency video coding (HEVC) based on convolutional neural network. The proposed fast algorithm contributes to decrease no less than two CU partition modes in each coding tree unit for full rate-distortion optimization processing, thereby reducing the encoder hardware complexity. Moreover, our algorithm use only texture information and it does not depend on the correlations among CU depths or spatially nearby CUs. It is friendly to the parallel processing and it can improve the pipeline process of RDO. The proposed algorithm is implemented in the reference software of HEVC (HM16.7). The simulation results show that the proposed algorithm can achieve over 67.3% computation complexity reduction comparing to the original HEVC algorithm.\",\"PeriodicalId\":376443,\"journal\":{\"name\":\"2018 International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCT.2018.8356852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCT.2018.8356852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于卷积神经网络的高效视频编码(HEVC)的快速编码单元(CU)大小决策算法。提出的快速算法有助于在每个编码树单元中减少不少于两个CU划分模式进行全率失真优化处理,从而降低编码器的硬件复杂度。此外,我们的算法只使用纹理信息,不依赖于CU深度之间的相关性或空间附近的CU。该方法有利于并行处理,改善了RDO的流水线过程。该算法在HEVC参考软件(HM16.7)中实现。仿真结果表明,与原HEVC算法相比,该算法的计算复杂度降低了67.3%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-complexity intra coding algorithm based on convolutional neural network for HEVC
In this paper, we propose a fast coding unit (CU) size decision algorithm for high efficiency video coding (HEVC) based on convolutional neural network. The proposed fast algorithm contributes to decrease no less than two CU partition modes in each coding tree unit for full rate-distortion optimization processing, thereby reducing the encoder hardware complexity. Moreover, our algorithm use only texture information and it does not depend on the correlations among CU depths or spatially nearby CUs. It is friendly to the parallel processing and it can improve the pipeline process of RDO. The proposed algorithm is implemented in the reference software of HEVC (HM16.7). The simulation results show that the proposed algorithm can achieve over 67.3% computation complexity reduction comparing to the original HEVC algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling banking processes A taxonomy of IoT: Security and privacy threats DDoS attack detection mechanism in the application layer using user features Reinforcement learning for game personalization on edge devices Stylized line rendering for three-dimensional models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1