利用轻量级卷积神经网络检测孟加拉芒果叶片病害

Nosin Ibna Mahbub, Feroza Naznin, Md. Imran Hasan, Syed Mahfuzur Rahman Shifat, Md. Alamgir Hossain, M. Islam
{"title":"利用轻量级卷积神经网络检测孟加拉芒果叶片病害","authors":"Nosin Ibna Mahbub, Feroza Naznin, Md. Imran Hasan, Syed Mahfuzur Rahman Shifat, Md. Alamgir Hossain, M. Islam","doi":"10.1109/ECCE57851.2023.10101648","DOIUrl":null,"url":null,"abstract":"This research concentrates on the diagnosis of common mango leaf diseases in Bangladesh using image processing via deep learning. Mango production could be raised by at least 28% globally if the crop could be safeguarded from a variety of diseases. However, without the assistance of an expert, it is challenging for the farmer to detect the disease at the appropriate time. Few studies have been conducted to identify the mango leaf disease present in Bangladesh. So far, no study has been done to identify the seven distinct mango leaf diseases reported in Bangladesh. We proposed a lightweight convolutional neural network (LCNN) in this paper to accurately classify seven distinct mango leaf diseases as well as normal mango leaf. To assess the proposed LCNN model, performance is compared to several pre-trained models such as VGG16, Resnet50, Resnet101, and Xception, and it is found that LCNN achieves the highest testing accuracy (98%).","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detect Bangladeshi Mango Leaf Diseases Using Lightweight Convolutional Neural Network\",\"authors\":\"Nosin Ibna Mahbub, Feroza Naznin, Md. Imran Hasan, Syed Mahfuzur Rahman Shifat, Md. Alamgir Hossain, M. Islam\",\"doi\":\"10.1109/ECCE57851.2023.10101648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research concentrates on the diagnosis of common mango leaf diseases in Bangladesh using image processing via deep learning. Mango production could be raised by at least 28% globally if the crop could be safeguarded from a variety of diseases. However, without the assistance of an expert, it is challenging for the farmer to detect the disease at the appropriate time. Few studies have been conducted to identify the mango leaf disease present in Bangladesh. So far, no study has been done to identify the seven distinct mango leaf diseases reported in Bangladesh. We proposed a lightweight convolutional neural network (LCNN) in this paper to accurately classify seven distinct mango leaf diseases as well as normal mango leaf. To assess the proposed LCNN model, performance is compared to several pre-trained models such as VGG16, Resnet50, Resnet101, and Xception, and it is found that LCNN achieves the highest testing accuracy (98%).\",\"PeriodicalId\":131537,\"journal\":{\"name\":\"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE57851.2023.10101648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究集中于通过深度学习使用图像处理对孟加拉国常见芒果叶病的诊断。如果能够保护芒果免受各种疾病的侵害,全球芒果产量至少可以提高28%。然而,如果没有专家的帮助,农民很难在适当的时候发现这种疾病。很少进行研究以确定孟加拉国存在的芒果叶病。到目前为止,还没有研究确定孟加拉国报道的七种不同的芒果叶病。本文提出了一种轻量级卷积神经网络(LCNN)来准确分类芒果叶片的七种不同病害以及正常的芒果叶片。为了评估提出的LCNN模型,将性能与几个预训练模型(如VGG16、Resnet50、Resnet101和Xception)进行了比较,发现LCNN达到了最高的测试准确率(98%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detect Bangladeshi Mango Leaf Diseases Using Lightweight Convolutional Neural Network
This research concentrates on the diagnosis of common mango leaf diseases in Bangladesh using image processing via deep learning. Mango production could be raised by at least 28% globally if the crop could be safeguarded from a variety of diseases. However, without the assistance of an expert, it is challenging for the farmer to detect the disease at the appropriate time. Few studies have been conducted to identify the mango leaf disease present in Bangladesh. So far, no study has been done to identify the seven distinct mango leaf diseases reported in Bangladesh. We proposed a lightweight convolutional neural network (LCNN) in this paper to accurately classify seven distinct mango leaf diseases as well as normal mango leaf. To assess the proposed LCNN model, performance is compared to several pre-trained models such as VGG16, Resnet50, Resnet101, and Xception, and it is found that LCNN achieves the highest testing accuracy (98%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclone Prediction Visualization Tools Using Machine Learning Models and Optical Flow Exploratory Perspective of PV Net-Energy-Metering for Residential Prosumers: A Case Study in Dhaka, Bangladesh Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models Deep CNN-GRU Based Human Activity Recognition with Automatic Feature Extraction Using Smartphone and Wearable Sensors Bengali-English Neural Machine Translation Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1