目的:建立一个基于注意力的血管造影判读系统

Francis K. H. Quek, C. Kirbas, F. Charbel
{"title":"目的:建立一个基于注意力的血管造影判读系统","authors":"Francis K. H. Quek, C. Kirbas, F. Charbel","doi":"10.1109/MIAR.2001.930281","DOIUrl":null,"url":null,"abstract":"We propose a model for the interactive interpretation of medical images pertaining to human neurovascular system. This attentionally-based interactive model, ATM, is founded upon human selective attention. AIM combines human operator's high level reasoning with machine perception and exploits human interaction as part of the solution. AIM defines two channels of interaction: context (\"what to look for\"), and focus-of-attention (\"where to look\") by which the user directs the attention of the machine perception. AIM facilitates varying degrees of human intervention in the process by providing four levels of abstraction for the context information. This hierarchy of context abstractions permits the system to function more autonomously (doing high-level tasks like extracting an arterial vessel) in routine interpretation, and to require more user intervention (e.g. locating arterial wall boundaries) as the image complexity increases or data quality worsen. This is important in medical imaging where the users demand ultimate control and confidence in the system. Such technology can contribute significantly on the design of radiological imaging systems.","PeriodicalId":375408,"journal":{"name":"Proceedings International Workshop on Medical Imaging and Augmented Reality","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"AIM: an attentionally-based system for the interpretation of angiography\",\"authors\":\"Francis K. H. Quek, C. Kirbas, F. Charbel\",\"doi\":\"10.1109/MIAR.2001.930281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a model for the interactive interpretation of medical images pertaining to human neurovascular system. This attentionally-based interactive model, ATM, is founded upon human selective attention. AIM combines human operator's high level reasoning with machine perception and exploits human interaction as part of the solution. AIM defines two channels of interaction: context (\\\"what to look for\\\"), and focus-of-attention (\\\"where to look\\\") by which the user directs the attention of the machine perception. AIM facilitates varying degrees of human intervention in the process by providing four levels of abstraction for the context information. This hierarchy of context abstractions permits the system to function more autonomously (doing high-level tasks like extracting an arterial vessel) in routine interpretation, and to require more user intervention (e.g. locating arterial wall boundaries) as the image complexity increases or data quality worsen. This is important in medical imaging where the users demand ultimate control and confidence in the system. Such technology can contribute significantly on the design of radiological imaging systems.\",\"PeriodicalId\":375408,\"journal\":{\"name\":\"Proceedings International Workshop on Medical Imaging and Augmented Reality\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Workshop on Medical Imaging and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIAR.2001.930281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Workshop on Medical Imaging and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIAR.2001.930281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一个关于人类神经血管系统的医学图像的交互式解释模型。这种基于注意力的交互模型,ATM,是建立在人类选择性注意力的基础上的。AIM将人类操作员的高级推理与机器感知相结合,并利用人类互动作为解决方案的一部分。AIM定义了两种交互渠道:上下文(“寻找什么”)和注意力焦点(“寻找哪里”),用户通过它来引导机器感知的注意力。AIM通过为上下文信息提供四个抽象级别,促进了过程中不同程度的人为干预。这种上下文抽象的层次结构允许系统在常规解释中更自主地运行(执行高级任务,如提取动脉血管),并且随着图像复杂性的增加或数据质量的恶化,需要更多的用户干预(例如定位动脉壁边界)。这在医学成像中很重要,因为用户需要对系统进行最终控制和信任。这种技术对放射成像系统的设计有很大的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AIM: an attentionally-based system for the interpretation of angiography
We propose a model for the interactive interpretation of medical images pertaining to human neurovascular system. This attentionally-based interactive model, ATM, is founded upon human selective attention. AIM combines human operator's high level reasoning with machine perception and exploits human interaction as part of the solution. AIM defines two channels of interaction: context ("what to look for"), and focus-of-attention ("where to look") by which the user directs the attention of the machine perception. AIM facilitates varying degrees of human intervention in the process by providing four levels of abstraction for the context information. This hierarchy of context abstractions permits the system to function more autonomously (doing high-level tasks like extracting an arterial vessel) in routine interpretation, and to require more user intervention (e.g. locating arterial wall boundaries) as the image complexity increases or data quality worsen. This is important in medical imaging where the users demand ultimate control and confidence in the system. Such technology can contribute significantly on the design of radiological imaging systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Template-matching approach to edge detection of volume data Level set methods and image segmentation Hybrid FEM for deformation of soft tissues in surgery simulation Segmentation and analysis of leg ulcers color images Development of a method to construct three-dimensional finite element models of thoracic aortic aneurysms from MRI images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1