基于注意力机制特征融合的无人机视觉跟踪算法

Sugang Ma, Zixian Zhang, Zhixian Zhao, Xiaobao Yang, Zhiqiang Hou
{"title":"基于注意力机制特征融合的无人机视觉跟踪算法","authors":"Sugang Ma, Zixian Zhang, Zhixian Zhao, Xiaobao Yang, Zhiqiang Hou","doi":"10.1145/3573942.3574035","DOIUrl":null,"url":null,"abstract":"To enhance the expression ability of deep features and improve the tracking performance of the fully convolutional siamese network (SiamFC) in the UAV scene, we propose a UAV visual tracking algorithm based on feature fusion of the attention mechanism. By designing the local perception attention module and the global perception attention module to enhance the features extracted from the backbone network, a set of complementary local enhanced features and global enhanced features are obtained. And then, the tracking response map fused with the two features is then located, which effectively improves the tracking robustness of SiamFC in the UAV scene. The algorithm and nine other related algorithms such as SiamFC are tested on the DTB70 dataset. The experiments show that the algorithm has a good tracking performance and can adapt to the visual object tracking task in the UAV scene.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV Visual Tracking Algorithm Based on Feature Fusion of the Attention Mechanism\",\"authors\":\"Sugang Ma, Zixian Zhang, Zhixian Zhao, Xiaobao Yang, Zhiqiang Hou\",\"doi\":\"10.1145/3573942.3574035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the expression ability of deep features and improve the tracking performance of the fully convolutional siamese network (SiamFC) in the UAV scene, we propose a UAV visual tracking algorithm based on feature fusion of the attention mechanism. By designing the local perception attention module and the global perception attention module to enhance the features extracted from the backbone network, a set of complementary local enhanced features and global enhanced features are obtained. And then, the tracking response map fused with the two features is then located, which effectively improves the tracking robustness of SiamFC in the UAV scene. The algorithm and nine other related algorithms such as SiamFC are tested on the DTB70 dataset. The experiments show that the algorithm has a good tracking performance and can adapt to the visual object tracking task in the UAV scene.\",\"PeriodicalId\":103293,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573942.3574035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3574035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了增强深度特征的表达能力,提高全卷积暹罗网络(SiamFC)在无人机场景中的跟踪性能,提出了一种基于注意力机制特征融合的无人机视觉跟踪算法。通过设计局部感知注意模块和全局感知注意模块对骨干网提取的特征进行增强,得到一组互补的局部增强特征和全局增强特征。然后,对融合了这两个特征的跟踪响应图进行定位,有效地提高了SiamFC在无人机场景下的跟踪鲁棒性。在DTB70数据集上对该算法和SiamFC等9种相关算法进行了测试。实验表明,该算法具有良好的跟踪性能,能够适应无人机场景中的视觉目标跟踪任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAV Visual Tracking Algorithm Based on Feature Fusion of the Attention Mechanism
To enhance the expression ability of deep features and improve the tracking performance of the fully convolutional siamese network (SiamFC) in the UAV scene, we propose a UAV visual tracking algorithm based on feature fusion of the attention mechanism. By designing the local perception attention module and the global perception attention module to enhance the features extracted from the backbone network, a set of complementary local enhanced features and global enhanced features are obtained. And then, the tracking response map fused with the two features is then located, which effectively improves the tracking robustness of SiamFC in the UAV scene. The algorithm and nine other related algorithms such as SiamFC are tested on the DTB70 dataset. The experiments show that the algorithm has a good tracking performance and can adapt to the visual object tracking task in the UAV scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Lightweight Method for Object Detection Incremental Encoding Transformer Incorporating Common-sense Awareness for Conversational Sentiment Recognition Non-intrusive Automatic 3D Gaze Ground-truth System Fiber Optic Gyroscope Random Error Modeling Based on Improved Kalman Filtering Channel Modeling of Spaceborne Multiwavelet Packet OFDM System Based on CWGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1