基于有限状态自动机技术的隐式场景问题机器人群任务规划

S. Manko, S. Diane, V. Lokhin
{"title":"基于有限状态自动机技术的隐式场景问题机器人群任务规划","authors":"S. Manko, S. Diane, V. Lokhin","doi":"10.1109/SCM.2017.7970581","DOIUrl":null,"url":null,"abstract":"This paper provides a methodology for planning collective actions of a group of autonomous robots to solve a multi-stage task in a partially determined environment when operation scenario is not known in advance. We describe finite-automata model of the multi-stage problem and propose a planning algorithm for dynamic formation of the scenario and its parallel-sequential execution. The resulting network of finite state machines allows not only to plan actions of the robots, but also to monitor task execution progress in real-time. Experimental results presented in the paper fully confirm the reliability of the proposed approach.","PeriodicalId":315574,"journal":{"name":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Task planning in robot groups for problems with implicitly defined scenarios based on finite-state automata technique\",\"authors\":\"S. Manko, S. Diane, V. Lokhin\",\"doi\":\"10.1109/SCM.2017.7970581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a methodology for planning collective actions of a group of autonomous robots to solve a multi-stage task in a partially determined environment when operation scenario is not known in advance. We describe finite-automata model of the multi-stage problem and propose a planning algorithm for dynamic formation of the scenario and its parallel-sequential execution. The resulting network of finite state machines allows not only to plan actions of the robots, but also to monitor task execution progress in real-time. Experimental results presented in the paper fully confirm the reliability of the proposed approach.\",\"PeriodicalId\":315574,\"journal\":{\"name\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM.2017.7970581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2017.7970581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提供了一种方法来规划一组自主机器人的集体行动,以解决一个多阶段的任务,在一个部分确定的环境,当操作场景是未知的提前。本文描述了多阶段问题的有限自动机模型,提出了一种场景动态形成及其并行顺序执行的规划算法。由此产生的有限状态机网络不仅可以规划机器人的动作,还可以实时监控任务的执行进度。实验结果充分证明了该方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task planning in robot groups for problems with implicitly defined scenarios based on finite-state automata technique
This paper provides a methodology for planning collective actions of a group of autonomous robots to solve a multi-stage task in a partially determined environment when operation scenario is not known in advance. We describe finite-automata model of the multi-stage problem and propose a planning algorithm for dynamic formation of the scenario and its parallel-sequential execution. The resulting network of finite state machines allows not only to plan actions of the robots, but also to monitor task execution progress in real-time. Experimental results presented in the paper fully confirm the reliability of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy model assessing the index of development of sustainable marketing of the company Bayesian approach in strategic management accounting and audit Comparing of systems of PCB routers Classification of information's uncertainty in system research Applying machine learning techniques to mine ventilation control systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1