{"title":"边缘感知卷积在RGB-D图像分割中的应用","authors":"Rongsen Chen, Fang-Lue Zhang, Taehyun Rhee","doi":"10.1109/IVCNZ51579.2020.9290608","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks using RGB-D images as input have shown superior performance in recent research in the field of semantic segmentation. In RGB-D data, the depth channel encodes information from the 3D spatial domain, which has an inherent difference with the color channels. It thus needs to be treated in a special way, rather than just processed as another channel of the input signal. Under this purpose, we propose a simple but not trivial edge-aware convolutional kernel to utilize the geometric information contained in the depth channel to extract feature maps in a more effective manner. The edge-aware convolutional kernel is built upon regular convolutional kernel, thus, it can be used to restructure existing CNN models to achieve stable and effective feature extraction for RGB-D data. We compare our result with a previous method that is closely related to our to show our method can provide more effective and stable feature extraction.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Edge-Aware Convolution for RGB-D Image Segmentation\",\"authors\":\"Rongsen Chen, Fang-Lue Zhang, Taehyun Rhee\",\"doi\":\"10.1109/IVCNZ51579.2020.9290608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks using RGB-D images as input have shown superior performance in recent research in the field of semantic segmentation. In RGB-D data, the depth channel encodes information from the 3D spatial domain, which has an inherent difference with the color channels. It thus needs to be treated in a special way, rather than just processed as another channel of the input signal. Under this purpose, we propose a simple but not trivial edge-aware convolutional kernel to utilize the geometric information contained in the depth channel to extract feature maps in a more effective manner. The edge-aware convolutional kernel is built upon regular convolutional kernel, thus, it can be used to restructure existing CNN models to achieve stable and effective feature extraction for RGB-D data. We compare our result with a previous method that is closely related to our to show our method can provide more effective and stable feature extraction.\",\"PeriodicalId\":164317,\"journal\":{\"name\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVCNZ51579.2020.9290608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge-Aware Convolution for RGB-D Image Segmentation
Convolutional Neural Networks using RGB-D images as input have shown superior performance in recent research in the field of semantic segmentation. In RGB-D data, the depth channel encodes information from the 3D spatial domain, which has an inherent difference with the color channels. It thus needs to be treated in a special way, rather than just processed as another channel of the input signal. Under this purpose, we propose a simple but not trivial edge-aware convolutional kernel to utilize the geometric information contained in the depth channel to extract feature maps in a more effective manner. The edge-aware convolutional kernel is built upon regular convolutional kernel, thus, it can be used to restructure existing CNN models to achieve stable and effective feature extraction for RGB-D data. We compare our result with a previous method that is closely related to our to show our method can provide more effective and stable feature extraction.