无对齐空间轨迹分析的低维特征向量表示

M. Werner, Marie Kiermeier
{"title":"无对齐空间轨迹分析的低维特征向量表示","authors":"M. Werner, Marie Kiermeier","doi":"10.1145/3004725.3004733","DOIUrl":null,"url":null,"abstract":"Trajectory analysis is a central problem in the era of big data due to numerous interconnected mobile devices generating unprecedented amounts of spatio-temporal trajectories. Unfortunately, datasets of spatial trajectories are quite difficult to analyse because of the computational complexity of the various existing distance measures. A significant amount of work in comparing two trajectories stems from calculating temporal alignments of the involved spatial points. With this paper, we propose an alignment-free method of representing spatial trajectories using low-dimensional feature vectors by summarizing the combinatorics of shape-derived string sequences. Therefore, we propose to translate trajectories into strings describing the evolving shape of each trajectory, and then provide a sparse matrix representation of these strings using frequencies of adjacencies of characters (n-grams). The final feature vectors are constructed by approximating this matrix with low-dimensional column space using singular value decomposition. New trajectories can be projected into this geometry for comparison. We show that this construction leads to low-dimensional feature vectors with surprising expressive power. We illustrate the usefulness of this approach in various datasets.","PeriodicalId":154980,"journal":{"name":"Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A low-dimensional feature vector representation for alignment-free spatial trajectory analysis\",\"authors\":\"M. Werner, Marie Kiermeier\",\"doi\":\"10.1145/3004725.3004733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory analysis is a central problem in the era of big data due to numerous interconnected mobile devices generating unprecedented amounts of spatio-temporal trajectories. Unfortunately, datasets of spatial trajectories are quite difficult to analyse because of the computational complexity of the various existing distance measures. A significant amount of work in comparing two trajectories stems from calculating temporal alignments of the involved spatial points. With this paper, we propose an alignment-free method of representing spatial trajectories using low-dimensional feature vectors by summarizing the combinatorics of shape-derived string sequences. Therefore, we propose to translate trajectories into strings describing the evolving shape of each trajectory, and then provide a sparse matrix representation of these strings using frequencies of adjacencies of characters (n-grams). The final feature vectors are constructed by approximating this matrix with low-dimensional column space using singular value decomposition. New trajectories can be projected into this geometry for comparison. We show that this construction leads to low-dimensional feature vectors with surprising expressive power. We illustrate the usefulness of this approach in various datasets.\",\"PeriodicalId\":154980,\"journal\":{\"name\":\"Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3004725.3004733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3004725.3004733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

轨迹分析是大数据时代的核心问题,因为大量相互连接的移动设备产生了前所未有的时空轨迹。不幸的是,由于现有各种距离度量的计算复杂性,空间轨迹数据集很难分析。比较两个轨迹的大量工作源于计算所涉及的空间点的时间对齐。在本文中,我们通过总结形状派生字符串序列的组合学,提出了一种使用低维特征向量表示空间轨迹的无对齐方法。因此,我们建议将轨迹转换为描述每个轨迹演变形状的字符串,然后使用字符邻接频率(n-grams)提供这些字符串的稀疏矩阵表示。最后利用奇异值分解将该矩阵用低维列空间逼近,构造出最终的特征向量。新的轨迹可以投射到这个几何图形中进行比较。我们证明了这种构造导致具有令人惊讶的表达能力的低维特征向量。我们在不同的数据集中说明了这种方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A low-dimensional feature vector representation for alignment-free spatial trajectory analysis
Trajectory analysis is a central problem in the era of big data due to numerous interconnected mobile devices generating unprecedented amounts of spatio-temporal trajectories. Unfortunately, datasets of spatial trajectories are quite difficult to analyse because of the computational complexity of the various existing distance measures. A significant amount of work in comparing two trajectories stems from calculating temporal alignments of the involved spatial points. With this paper, we propose an alignment-free method of representing spatial trajectories using low-dimensional feature vectors by summarizing the combinatorics of shape-derived string sequences. Therefore, we propose to translate trajectories into strings describing the evolving shape of each trajectory, and then provide a sparse matrix representation of these strings using frequencies of adjacencies of characters (n-grams). The final feature vectors are constructed by approximating this matrix with low-dimensional column space using singular value decomposition. New trajectories can be projected into this geometry for comparison. We show that this construction leads to low-dimensional feature vectors with surprising expressive power. We illustrate the usefulness of this approach in various datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial trajectories segmentation: trends and challenges System architecture of cloud-based web GIS for real-time macroeconomic loss estimation Lightweight road manager: smartphone-based automatic determination of road damage status by deep neural network A low-dimensional feature vector representation for alignment-free spatial trajectory analysis Discovering spatiotemporal event sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1