基于Uber数据的定量直方图预测出租车乘客需求的方法

A. Bharathi, S. Prakash
{"title":"基于Uber数据的定量直方图预测出租车乘客需求的方法","authors":"A. Bharathi, S. Prakash","doi":"10.1109/ICACCE46606.2019.9079980","DOIUrl":null,"url":null,"abstract":"The precise prediction of the day to day and monthly transactions is of great value for companies. This information can be beneficial for the companies in analyzing their ups and downs and draw other plans. Moreover, a precise prediction method can optimize the performance of a company. The branch of analytics that deals with prediction is known as predictive analytics. This paper presents the use of data analytics in analyzing the transaction dataset provided by Uber to predict the possible outcomes and the changes to be made. The histograms and heat maps drawn provide us a clear visualization of the dataset and we must predict the rest out of it.","PeriodicalId":317123,"journal":{"name":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An approach to predict taxi-passenger demand using quantitative histogram on Uber data\",\"authors\":\"A. Bharathi, S. Prakash\",\"doi\":\"10.1109/ICACCE46606.2019.9079980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise prediction of the day to day and monthly transactions is of great value for companies. This information can be beneficial for the companies in analyzing their ups and downs and draw other plans. Moreover, a precise prediction method can optimize the performance of a company. The branch of analytics that deals with prediction is known as predictive analytics. This paper presents the use of data analytics in analyzing the transaction dataset provided by Uber to predict the possible outcomes and the changes to be made. The histograms and heat maps drawn provide us a clear visualization of the dataset and we must predict the rest out of it.\",\"PeriodicalId\":317123,\"journal\":{\"name\":\"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCE46606.2019.9079980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCE46606.2019.9079980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对每天和每月交易的精确预测对公司有很大的价值。这些信息可以帮助公司分析他们的起起落落,并制定其他计划。此外,一个精确的预测方法可以优化公司的绩效。分析学中处理预测的分支被称为预测分析学。本文介绍了在分析Uber提供的交易数据集时使用数据分析来预测可能的结果和要做出的改变。绘制的直方图和热图为我们提供了数据集的清晰可视化,我们必须预测它的其余部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An approach to predict taxi-passenger demand using quantitative histogram on Uber data
The precise prediction of the day to day and monthly transactions is of great value for companies. This information can be beneficial for the companies in analyzing their ups and downs and draw other plans. Moreover, a precise prediction method can optimize the performance of a company. The branch of analytics that deals with prediction is known as predictive analytics. This paper presents the use of data analytics in analyzing the transaction dataset provided by Uber to predict the possible outcomes and the changes to be made. The histograms and heat maps drawn provide us a clear visualization of the dataset and we must predict the rest out of it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big Data Retrieval using HDFS with LZO Compression Robustness Evaluation of Cyber Physical Systems through Network Protocol Fuzzing Efficient Minutiae Matching Algorithm for Fingerprint Recognition A Novel Noise Removal in Digital Mammograms based on Statistical Algorithms Estimation of maximum range for underwater optical communication using PIN and avalanche photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1