ARM大处理器混合运行时功率模型的评估。小建筑

Krastin Nikov, J. Núñez-Yáñez, Matthew Horsnell
{"title":"ARM大处理器混合运行时功率模型的评估。小建筑","authors":"Krastin Nikov, J. Núñez-Yáñez, Matthew Horsnell","doi":"10.1109/EUC.2015.32","DOIUrl":null,"url":null,"abstract":"Heterogeneous processors, formed by binary compatible CPU cores with different microarchitectures, enable energy reductions by better matching processing capabilities and software application requirements. This new hardware platform requires novel techniques to manage power and energy to fully utilize its capabilities, particularly regarding the mapping of workloads to appropriate cores. In this paper we validate relevant published work related to power modelling for heterogeneous systems and propose a new approach for developing run-time power models that uses a hybrid set of physical predictors, performance events and CPU state information. We demonstrate the accuracy of this approach compared with the state-of-the-art and its applicability to energy aware scheduling. Our results are obtained on a commercially available platform built around the Samsung Exynos 5 Octa SoC, which features the ARM big.LITTLE heterogeneous architecture.","PeriodicalId":299207,"journal":{"name":"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Evaluation of Hybrid Run-Time Power Models for the ARM Big.LITTLE Architecture\",\"authors\":\"Krastin Nikov, J. Núñez-Yáñez, Matthew Horsnell\",\"doi\":\"10.1109/EUC.2015.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous processors, formed by binary compatible CPU cores with different microarchitectures, enable energy reductions by better matching processing capabilities and software application requirements. This new hardware platform requires novel techniques to manage power and energy to fully utilize its capabilities, particularly regarding the mapping of workloads to appropriate cores. In this paper we validate relevant published work related to power modelling for heterogeneous systems and propose a new approach for developing run-time power models that uses a hybrid set of physical predictors, performance events and CPU state information. We demonstrate the accuracy of this approach compared with the state-of-the-art and its applicability to energy aware scheduling. Our results are obtained on a commercially available platform built around the Samsung Exynos 5 Octa SoC, which features the ARM big.LITTLE heterogeneous architecture.\",\"PeriodicalId\":299207,\"journal\":{\"name\":\"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUC.2015.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUC.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

异构处理器由具有不同微架构的二进制兼容CPU内核组成,通过更好地匹配处理能力和软件应用需求来实现节能。这个新的硬件平台需要新颖的技术来管理电源和能源,以充分利用其功能,特别是在将工作负载映射到适当的核心方面。在本文中,我们验证了与异构系统功率建模相关的相关出版工作,并提出了一种开发运行时功率模型的新方法,该模型使用物理预测器、性能事件和CPU状态信息的混合集。我们证明了这种方法与最先进的方法相比的准确性及其对能源感知调度的适用性。我们的结果是在围绕三星Exynos 5 Octa SoC构建的商用平台上获得的,该平台具有ARM big。异构架构少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Hybrid Run-Time Power Models for the ARM Big.LITTLE Architecture
Heterogeneous processors, formed by binary compatible CPU cores with different microarchitectures, enable energy reductions by better matching processing capabilities and software application requirements. This new hardware platform requires novel techniques to manage power and energy to fully utilize its capabilities, particularly regarding the mapping of workloads to appropriate cores. In this paper we validate relevant published work related to power modelling for heterogeneous systems and propose a new approach for developing run-time power models that uses a hybrid set of physical predictors, performance events and CPU state information. We demonstrate the accuracy of this approach compared with the state-of-the-art and its applicability to energy aware scheduling. Our results are obtained on a commercially available platform built around the Samsung Exynos 5 Octa SoC, which features the ARM big.LITTLE heterogeneous architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linux SCHED DEADLINE vs. MARTOP-EDF Context Aware Power Management Enhanced by Radio Wake Up in Body Area Networks A Holistic Approach for Advancing Robots in Ambient Assisted Living Environments A Self-Adaptive System for Vehicle Information Security Applications Automatic Design of Low-Power VLSI Circuits: Accurate and Approximate Multipliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1