Y. Toriyama, Kazuya Kojima, T. Taniguchi, Miao Zhang, J. Hirokawa
{"title":"用于毫米波应用的多级QAM单载波高效宽带无线系统","authors":"Y. Toriyama, Kazuya Kojima, T. Taniguchi, Miao Zhang, J. Hirokawa","doi":"10.1109/RWS.2010.5434145","DOIUrl":null,"url":null,"abstract":"In preparation for achieving the millimeter-wave ultra-broadband wireless system aimed at seamless connection with the optical communication network, we have developed key devices such as baseband signal processing SoC (System-On-Chip) with the built-in ultrahigh-speed multi-level QAM (Quadrature amplitude modulation) modem (modulator and demodulator), SiGe I/Q quadrature modulator and demodulator MMIC (Microwave Monolithic Integrated Circuit), and GaAsHEMT frequency converter MMIC. We have also prototyped the micro-mini and ultra-broadband 38 GHz band point-to-point wireless system using TDD (Time Division Duplex) mode with dynamic bandwidth assignment that adopts the configurations of separate transmission and receiving antennas capitalizing on the characteristic of smaller antenna area in the millimeter-wave band to achieve the performance that the radio clock frequency is 200 MHz and the maximum effective throughput on 16QAM is 600 Mbps.","PeriodicalId":334671,"journal":{"name":"2010 IEEE Radio and Wireless Symposium (RWS)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-level QAM single-carrier high-efficiency broadband wireless system for millimeter-wave applications\",\"authors\":\"Y. Toriyama, Kazuya Kojima, T. Taniguchi, Miao Zhang, J. Hirokawa\",\"doi\":\"10.1109/RWS.2010.5434145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In preparation for achieving the millimeter-wave ultra-broadband wireless system aimed at seamless connection with the optical communication network, we have developed key devices such as baseband signal processing SoC (System-On-Chip) with the built-in ultrahigh-speed multi-level QAM (Quadrature amplitude modulation) modem (modulator and demodulator), SiGe I/Q quadrature modulator and demodulator MMIC (Microwave Monolithic Integrated Circuit), and GaAsHEMT frequency converter MMIC. We have also prototyped the micro-mini and ultra-broadband 38 GHz band point-to-point wireless system using TDD (Time Division Duplex) mode with dynamic bandwidth assignment that adopts the configurations of separate transmission and receiving antennas capitalizing on the characteristic of smaller antenna area in the millimeter-wave band to achieve the performance that the radio clock frequency is 200 MHz and the maximum effective throughput on 16QAM is 600 Mbps.\",\"PeriodicalId\":334671,\"journal\":{\"name\":\"2010 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2010.5434145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2010.5434145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-level QAM single-carrier high-efficiency broadband wireless system for millimeter-wave applications
In preparation for achieving the millimeter-wave ultra-broadband wireless system aimed at seamless connection with the optical communication network, we have developed key devices such as baseband signal processing SoC (System-On-Chip) with the built-in ultrahigh-speed multi-level QAM (Quadrature amplitude modulation) modem (modulator and demodulator), SiGe I/Q quadrature modulator and demodulator MMIC (Microwave Monolithic Integrated Circuit), and GaAsHEMT frequency converter MMIC. We have also prototyped the micro-mini and ultra-broadband 38 GHz band point-to-point wireless system using TDD (Time Division Duplex) mode with dynamic bandwidth assignment that adopts the configurations of separate transmission and receiving antennas capitalizing on the characteristic of smaller antenna area in the millimeter-wave band to achieve the performance that the radio clock frequency is 200 MHz and the maximum effective throughput on 16QAM is 600 Mbps.