轻量级变压器网络与亲属关系验证的自监督任务

Xiaoke Zhu, Yunwei Li, Danyang Li, Lingyun Dong, Xiaopan Chen
{"title":"轻量级变压器网络与亲属关系验证的自监督任务","authors":"Xiaoke Zhu, Yunwei Li, Danyang Li, Lingyun Dong, Xiaopan Chen","doi":"10.1109/ICCC56324.2022.10066034","DOIUrl":null,"url":null,"abstract":"Kinship verification is one of the interesting and critical problems in computer vision research, with significant progress in the past decades. Meanwhile, Vision Transformer (VIT) has recently achieved impressive success in many domains, including object detection, image recognition, and semantic segmentation, among others. Most of the previous work on kinship verification are based on convolutional or recurrent neural networks. Compared with the local processing of images like convolutions, transformers can effectively understand and process images globally. However, due to overuse, there are many Transformer layers of fully connected layers, and VIT speed is still an issue. Therefore, in this paper, inspired by the recent success of Transformer models in vision tasks, we propose a Transformer-based kinship verification for training and optimizing kinship verification models. We first train the basic vision transformer (VIT-B) with 12 transformer layers, then we reduce the transformer layers to 6 layers, namely VIT-S (Small Vit) and 4 layers, namely VIT-T (Tiny Vit), to make a tradeoff between optimization accuracy and efficiency. As the first attempt to apply Transformer to the kinship verification task, it provides a feasible strategy for kinship research topics and verifies the effectiveness of the method in terms of the accuracy of the experimental results.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Transformer Network and Self-supervised Task for Kinship Verification\",\"authors\":\"Xiaoke Zhu, Yunwei Li, Danyang Li, Lingyun Dong, Xiaopan Chen\",\"doi\":\"10.1109/ICCC56324.2022.10066034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinship verification is one of the interesting and critical problems in computer vision research, with significant progress in the past decades. Meanwhile, Vision Transformer (VIT) has recently achieved impressive success in many domains, including object detection, image recognition, and semantic segmentation, among others. Most of the previous work on kinship verification are based on convolutional or recurrent neural networks. Compared with the local processing of images like convolutions, transformers can effectively understand and process images globally. However, due to overuse, there are many Transformer layers of fully connected layers, and VIT speed is still an issue. Therefore, in this paper, inspired by the recent success of Transformer models in vision tasks, we propose a Transformer-based kinship verification for training and optimizing kinship verification models. We first train the basic vision transformer (VIT-B) with 12 transformer layers, then we reduce the transformer layers to 6 layers, namely VIT-S (Small Vit) and 4 layers, namely VIT-T (Tiny Vit), to make a tradeoff between optimization accuracy and efficiency. As the first attempt to apply Transformer to the kinship verification task, it provides a feasible strategy for kinship research topics and verifies the effectiveness of the method in terms of the accuracy of the experimental results.\",\"PeriodicalId\":263098,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC56324.2022.10066034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10066034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亲属关系验证是计算机视觉研究中一个有趣而关键的问题,在过去的几十年里取得了重大进展。与此同时,视觉转换器(Vision Transformer, VIT)最近在许多领域取得了令人瞩目的成功,包括目标检测、图像识别和语义分割等。以往的亲属关系验证工作大多基于卷积或递归神经网络。与卷积等图像的局部处理相比,变压器可以有效地对图像进行全局理解和处理。然而,由于过度使用,有许多完全连接层的Transformer层,VIT速度仍然是一个问题。因此,在本文中,受最近Transformer模型在视觉任务中的成功启发,我们提出了一个基于Transformer的亲属验证来训练和优化亲属验证模型。我们首先训练具有12层变压器的基本视觉变压器(viti - b),然后将变压器层减少到6层,即viti - s (Small Vit)和4层,即vitt - t (Tiny Vit),以在优化精度和效率之间进行权衡。作为将Transformer应用于亲属关系验证任务的首次尝试,为亲属关系研究课题提供了可行的策略,并从实验结果的准确性方面验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight Transformer Network and Self-supervised Task for Kinship Verification
Kinship verification is one of the interesting and critical problems in computer vision research, with significant progress in the past decades. Meanwhile, Vision Transformer (VIT) has recently achieved impressive success in many domains, including object detection, image recognition, and semantic segmentation, among others. Most of the previous work on kinship verification are based on convolutional or recurrent neural networks. Compared with the local processing of images like convolutions, transformers can effectively understand and process images globally. However, due to overuse, there are many Transformer layers of fully connected layers, and VIT speed is still an issue. Therefore, in this paper, inspired by the recent success of Transformer models in vision tasks, we propose a Transformer-based kinship verification for training and optimizing kinship verification models. We first train the basic vision transformer (VIT-B) with 12 transformer layers, then we reduce the transformer layers to 6 layers, namely VIT-S (Small Vit) and 4 layers, namely VIT-T (Tiny Vit), to make a tradeoff between optimization accuracy and efficiency. As the first attempt to apply Transformer to the kinship verification task, it provides a feasible strategy for kinship research topics and verifies the effectiveness of the method in terms of the accuracy of the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Backward Edge Pointer Protection Technology Based on Dynamic Instrumentation Experimental Design of Router Debugging based Neighbor Cache States Change of IPv6 Nodes Sharing Big Data Storage for Air Traffic Management Study of Non-Orthogonal Multiple Access Technology for Satellite Communications A Joint Design of Polar Codes and Physical-layer Network Coding in Visible Light Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1