一种提高lcl型并网逆变器电流控制性能的延迟补偿方法

Lin Wang, Pengju Sun, Jie Wang, Kunlong Zhu, Tongyu Xue, Yuxin Zhang
{"title":"一种提高lcl型并网逆变器电流控制性能的延迟补偿方法","authors":"Lin Wang, Pengju Sun, Jie Wang, Kunlong Zhu, Tongyu Xue, Yuxin Zhang","doi":"10.1109/PEDG.2019.8807701","DOIUrl":null,"url":null,"abstract":"Capacitive current feedback active damping is widely used in the LCL-type grid-connected inverter, which can effectively suppress the resonance peak of the system. However, the control delay in digital control system can change the characteristic of capacitive current feedback active damping and make the positive and negative boundary frequency of equivalent resistance is fs/6, which affects the stability of the grid-connected inverter and the robustness to grid impedance. At the same time, the control delay would introduce phase lag and limit the bandwidth of the control loop. Therefore, a delay compensation method considering both active damping characteristics and loop bandwidth is proposed, which can expand the boundary frequency to 0.43fs and greatly improve the robustness and dynamic performance of the system. Moreover, the sampling method is synchronous sampling, which strong switching-noise immunity. Simulation results verify the validity of the proposed method.","PeriodicalId":248726,"journal":{"name":"2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Delay Compensation Method to Improve the Current Control Performance of the LCL-Type Grid-Connected Inverter\",\"authors\":\"Lin Wang, Pengju Sun, Jie Wang, Kunlong Zhu, Tongyu Xue, Yuxin Zhang\",\"doi\":\"10.1109/PEDG.2019.8807701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitive current feedback active damping is widely used in the LCL-type grid-connected inverter, which can effectively suppress the resonance peak of the system. However, the control delay in digital control system can change the characteristic of capacitive current feedback active damping and make the positive and negative boundary frequency of equivalent resistance is fs/6, which affects the stability of the grid-connected inverter and the robustness to grid impedance. At the same time, the control delay would introduce phase lag and limit the bandwidth of the control loop. Therefore, a delay compensation method considering both active damping characteristics and loop bandwidth is proposed, which can expand the boundary frequency to 0.43fs and greatly improve the robustness and dynamic performance of the system. Moreover, the sampling method is synchronous sampling, which strong switching-noise immunity. Simulation results verify the validity of the proposed method.\",\"PeriodicalId\":248726,\"journal\":{\"name\":\"2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG.2019.8807701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG.2019.8807701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电容式电流反馈有源阻尼广泛应用于lcl型并网逆变器中,它能有效抑制系统的谐振峰值。然而,数字控制系统中的控制延迟会改变电容式电流反馈主动阻尼的特性,使等效电阻的正负边界频率为fs/6,从而影响并网逆变器的稳定性和对电网阻抗的鲁棒性。同时,控制延迟会引入相位滞后,限制控制环路的带宽。因此,提出了一种同时考虑主动阻尼特性和环路带宽的延迟补偿方法,将边界频率扩展到0.43fs,大大提高了系统的鲁棒性和动态性能。采样方式为同步采样,具有较强的抗开关噪声能力。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Delay Compensation Method to Improve the Current Control Performance of the LCL-Type Grid-Connected Inverter
Capacitive current feedback active damping is widely used in the LCL-type grid-connected inverter, which can effectively suppress the resonance peak of the system. However, the control delay in digital control system can change the characteristic of capacitive current feedback active damping and make the positive and negative boundary frequency of equivalent resistance is fs/6, which affects the stability of the grid-connected inverter and the robustness to grid impedance. At the same time, the control delay would introduce phase lag and limit the bandwidth of the control loop. Therefore, a delay compensation method considering both active damping characteristics and loop bandwidth is proposed, which can expand the boundary frequency to 0.43fs and greatly improve the robustness and dynamic performance of the system. Moreover, the sampling method is synchronous sampling, which strong switching-noise immunity. Simulation results verify the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Output Voltage Adjustable Resonant Converter Based on Auxiliary LLC with Winding Power Flow Calculation and Operating Parameter Optimization of Fractional Frequency Power Transmission System Novel Three-Phase Two-Third-Modulated Buck-Boost Current Source Inverter System Employing Dual-Gate Monolithic Bidirectional GaN e-FETs Single-Phase High-gain Bidirectional DC/AC Converter Based on High Step-up/step-down DC/DC Converter and Dual-input DC/AC Converter A Novel Passive Integrated Unit for Multi-Component Resonant Converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1