Ulf Brefeld, Thomas Gärtner, T. Scheffer, S. Wrobel
{"title":"有效的协正则化最小二乘回归","authors":"Ulf Brefeld, Thomas Gärtner, T. Scheffer, S. Wrobel","doi":"10.1145/1143844.1143862","DOIUrl":null,"url":null,"abstract":"In many applications, unlabelled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilise such examples to reduce the predictive error. In this paper, we investigate a semi-supervised least squares regression algorithm based on the co-learning approach. Similar to other semi-supervised algorithms, our base algorithm has cubic runtime complexity in the number of unlabelled examples. To be able to handle larger sets of unlabelled examples, we devise a semi-parametric variant that scales linearly in the number of unlabelled examples. Experiments show a significant error reduction by co-regularisation and a large runtime improvement for the semi-parametric approximation. Last but not least, we propose a distributed procedure that can be applied without collecting all data at a single site.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"173","resultStr":"{\"title\":\"Efficient co-regularised least squares regression\",\"authors\":\"Ulf Brefeld, Thomas Gärtner, T. Scheffer, S. Wrobel\",\"doi\":\"10.1145/1143844.1143862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applications, unlabelled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilise such examples to reduce the predictive error. In this paper, we investigate a semi-supervised least squares regression algorithm based on the co-learning approach. Similar to other semi-supervised algorithms, our base algorithm has cubic runtime complexity in the number of unlabelled examples. To be able to handle larger sets of unlabelled examples, we devise a semi-parametric variant that scales linearly in the number of unlabelled examples. Experiments show a significant error reduction by co-regularisation and a large runtime improvement for the semi-parametric approximation. Last but not least, we propose a distributed procedure that can be applied without collecting all data at a single site.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"173\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In many applications, unlabelled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilise such examples to reduce the predictive error. In this paper, we investigate a semi-supervised least squares regression algorithm based on the co-learning approach. Similar to other semi-supervised algorithms, our base algorithm has cubic runtime complexity in the number of unlabelled examples. To be able to handle larger sets of unlabelled examples, we devise a semi-parametric variant that scales linearly in the number of unlabelled examples. Experiments show a significant error reduction by co-regularisation and a large runtime improvement for the semi-parametric approximation. Last but not least, we propose a distributed procedure that can be applied without collecting all data at a single site.