候选基因和单核苷酸基因变异与周期性运动运动员肌肉和肌腱损伤相关

O. Balberova
{"title":"候选基因和单核苷酸基因变异与周期性运动运动员肌肉和肌腱损伤相关","authors":"O. Balberova","doi":"10.52667/2712-9179-2021-1-1-64-72","DOIUrl":null,"url":null,"abstract":"Sports injuries prevention is one of the key issues of the training process and reducing the risk of developing anxiety and depressive disorders in professional athletes. One of peculiarities of sports injuries is the loss of the ability to train in view of the tendon-ligamentous apparatus integrity, joints, muscles or bones violation. In cyclic sports, the most common are injuries to the ankle joint, injuries to muscles and tendons, and sprains. Injuries to ligaments and tendons are the result of multifactorial problems, including the discrepancy between training effects and the genetically determined capabilities of the athlete's body. Sports injuries consequences are determined by complex interactions between the athlete's genotype and environmental factors, in particular training influences. (1) Background: to review scientific articles on the problem of research on candidate genes and single-nucleotide variants (SNVs) of genes associated with muscle, tendon, and ligament injuries in cyclic sports athletes. (2) Methods: a search of articles for the period from 2008 to 2020 was conducted in the databases e-LIBRARY, SCOPUS, Web of Science, Google Scholar, Clinical keys, PubMed using the keywords: personalized medicine, genetics, candidate genes, single-nucleotide variant, polymorphism, muscle, tendon, injury, athlete. (3) Results: Studies have shown that muscle and tendon injuries in cyclical sports athletes are associated with SNV rs1800012, rs1107946 of the COL1A1 gene, SNV rs12722 of the COL5A1 gene, SNV rs679620 of the MMR3 gene, SNV rs2289360 of the ELN gene, SNV rs143383 of the GDF5 gene. The most studied polymorphisms are rs1800012, rs1107946 of the COL1A1 gene, rs12722 of the COL5A1 gene, and rs143383 of the GDF5 gene. The variable results of associative genetic studies and genome-wide studies are most likely due to the racial and ethnic heterogeneity of the samples and differences in the study design. (4) Conclusions: Identification of genetic markers associated with injuries and diseases of the musculoskeletal system, ligamentous apparatus, and the ability of tissue to regenerate can help sports doctors and coaches develop personalized strategies to prevent or reduce muscles, joints, and ligaments diseases in athletes. The translation of these research results into the training and treatment process is important for improving cyclic sports athletes' performance, reducing their professional mala-daptation and anxiety and depressive disorders development risk.","PeriodicalId":414041,"journal":{"name":"Personalized Psychiatry and Neurology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Candidate genes and single-nucleotide gene variants associated with muscle and tendon injuries in cyclic sports athletes\",\"authors\":\"O. Balberova\",\"doi\":\"10.52667/2712-9179-2021-1-1-64-72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sports injuries prevention is one of the key issues of the training process and reducing the risk of developing anxiety and depressive disorders in professional athletes. One of peculiarities of sports injuries is the loss of the ability to train in view of the tendon-ligamentous apparatus integrity, joints, muscles or bones violation. In cyclic sports, the most common are injuries to the ankle joint, injuries to muscles and tendons, and sprains. Injuries to ligaments and tendons are the result of multifactorial problems, including the discrepancy between training effects and the genetically determined capabilities of the athlete's body. Sports injuries consequences are determined by complex interactions between the athlete's genotype and environmental factors, in particular training influences. (1) Background: to review scientific articles on the problem of research on candidate genes and single-nucleotide variants (SNVs) of genes associated with muscle, tendon, and ligament injuries in cyclic sports athletes. (2) Methods: a search of articles for the period from 2008 to 2020 was conducted in the databases e-LIBRARY, SCOPUS, Web of Science, Google Scholar, Clinical keys, PubMed using the keywords: personalized medicine, genetics, candidate genes, single-nucleotide variant, polymorphism, muscle, tendon, injury, athlete. (3) Results: Studies have shown that muscle and tendon injuries in cyclical sports athletes are associated with SNV rs1800012, rs1107946 of the COL1A1 gene, SNV rs12722 of the COL5A1 gene, SNV rs679620 of the MMR3 gene, SNV rs2289360 of the ELN gene, SNV rs143383 of the GDF5 gene. The most studied polymorphisms are rs1800012, rs1107946 of the COL1A1 gene, rs12722 of the COL5A1 gene, and rs143383 of the GDF5 gene. The variable results of associative genetic studies and genome-wide studies are most likely due to the racial and ethnic heterogeneity of the samples and differences in the study design. (4) Conclusions: Identification of genetic markers associated with injuries and diseases of the musculoskeletal system, ligamentous apparatus, and the ability of tissue to regenerate can help sports doctors and coaches develop personalized strategies to prevent or reduce muscles, joints, and ligaments diseases in athletes. The translation of these research results into the training and treatment process is important for improving cyclic sports athletes' performance, reducing their professional mala-daptation and anxiety and depressive disorders development risk.\",\"PeriodicalId\":414041,\"journal\":{\"name\":\"Personalized Psychiatry and Neurology\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Personalized Psychiatry and Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52667/2712-9179-2021-1-1-64-72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized Psychiatry and Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52667/2712-9179-2021-1-1-64-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

运动损伤预防是职业运动员训练过程中降低焦虑和抑郁风险的关键问题之一。运动损伤的特点之一是由于肌腱-韧带的完整性、关节、肌肉或骨骼的损伤而导致训练能力的丧失。在循环运动中,最常见的是踝关节损伤、肌肉和肌腱损伤以及扭伤。韧带和肌腱的损伤是多因素问题的结果,包括训练效果和运动员身体基因决定能力之间的差异。运动损伤的后果是由运动员基因型和环境因素之间复杂的相互作用决定的,特别是训练的影响。(1)背景:综述循环运动运动员肌肉、肌腱和韧带损伤相关基因候选基因和单核苷酸变异(SNVs)研究问题的相关文献。(2)方法:在e-LIBRARY、SCOPUS、Web of Science、Google Scholar、Clinical keys、PubMed等数据库中检索2008 - 2020年的文献,检索关键词:个性化医疗、遗传学、候选基因、单核苷酸变异、多态性、肌肉、肌腱、损伤、运动员。(3)结果:研究表明周期性运动运动员肌肉和肌腱损伤与COL1A1基因SNV rs1800012、COL1A1基因rs1107946、COL5A1基因SNV rs12722、MMR3基因SNV rs679620、ELN基因SNV rs2289360、GDF5基因SNV rs143383相关。研究最多的多态性是COL1A1基因的rs1800012、rs1107946、COL5A1基因的rs12722和GDF5基因的rs143383。关联遗传研究和全基因组研究的可变结果最有可能是由于样本的种族和民族异质性以及研究设计的差异。(4)结论:识别与肌肉骨骼系统、韧带装置和组织再生能力损伤和疾病相关的遗传标记,可以帮助运动医生和教练制定个性化策略,以预防或减少运动员的肌肉、关节和韧带疾病。将这些研究成果转化到训练和治疗过程中,对于提高循环运动运动员的运动成绩,降低其职业适应不良和焦虑抑郁障碍的发展风险具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Candidate genes and single-nucleotide gene variants associated with muscle and tendon injuries in cyclic sports athletes
Sports injuries prevention is one of the key issues of the training process and reducing the risk of developing anxiety and depressive disorders in professional athletes. One of peculiarities of sports injuries is the loss of the ability to train in view of the tendon-ligamentous apparatus integrity, joints, muscles or bones violation. In cyclic sports, the most common are injuries to the ankle joint, injuries to muscles and tendons, and sprains. Injuries to ligaments and tendons are the result of multifactorial problems, including the discrepancy between training effects and the genetically determined capabilities of the athlete's body. Sports injuries consequences are determined by complex interactions between the athlete's genotype and environmental factors, in particular training influences. (1) Background: to review scientific articles on the problem of research on candidate genes and single-nucleotide variants (SNVs) of genes associated with muscle, tendon, and ligament injuries in cyclic sports athletes. (2) Methods: a search of articles for the period from 2008 to 2020 was conducted in the databases e-LIBRARY, SCOPUS, Web of Science, Google Scholar, Clinical keys, PubMed using the keywords: personalized medicine, genetics, candidate genes, single-nucleotide variant, polymorphism, muscle, tendon, injury, athlete. (3) Results: Studies have shown that muscle and tendon injuries in cyclical sports athletes are associated with SNV rs1800012, rs1107946 of the COL1A1 gene, SNV rs12722 of the COL5A1 gene, SNV rs679620 of the MMR3 gene, SNV rs2289360 of the ELN gene, SNV rs143383 of the GDF5 gene. The most studied polymorphisms are rs1800012, rs1107946 of the COL1A1 gene, rs12722 of the COL5A1 gene, and rs143383 of the GDF5 gene. The variable results of associative genetic studies and genome-wide studies are most likely due to the racial and ethnic heterogeneity of the samples and differences in the study design. (4) Conclusions: Identification of genetic markers associated with injuries and diseases of the musculoskeletal system, ligamentous apparatus, and the ability of tissue to regenerate can help sports doctors and coaches develop personalized strategies to prevent or reduce muscles, joints, and ligaments diseases in athletes. The translation of these research results into the training and treatment process is important for improving cyclic sports athletes' performance, reducing their professional mala-daptation and anxiety and depressive disorders development risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Pharmacogenetic Testing in Psychiatry: Pros and Cons The Frequency and Structure of Adverse Drug Reactions in the Pharmacotherapy of Epilepsy Application of Transcranial Magnetic Stimulation for the Treatment of Residual Catatonia Genetic Associations of the Polymorphic Variant of the DRD2 (rs1800497) Gene with Forms of Suicidal Behavior in Patients with Alcohol Dependence Atypical Structure of Broca's Area in a Patient with Primary Progressive Atrophy Syndrome at the Onset of Alzheimer's Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1