{"title":"在压缩感知环境下流行的11 -最小化算法的性能评价","authors":"T. Bijeesh","doi":"10.18495/COMENGAPP.V3I1.39","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS) is a data acquisition technique that is gaining popularity because of the fact that the reconstruction of the original signal is possible even if it was sampled at a sub-Nyquist rate. In contrast to the traditional sampling method, in CS we take a few measurements from the signal and the original signal can then be reconstructed from these measurements by using an optimization technique called l1 -minimization. Computer engineers and mathematician have been equally fascinated by this latest trend in digital signal processing. In this work we perform an evaluation of different l1 -minimization algorithms for their performance in reconstructing the signal in the context of CS. The algorithms that have been evaluated are PALM (Primal Augmented Lagrangian Multiplier method), DALM (Dual Augmented Lagrangian Multiplier method) and ISTA (Iterative Soft Thresholding Algorithm). The evaluation is done based on three parameters which are execution time, PSNR and RMSE.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of popular l1-minimization algorithms in the context of Compressed Sensing\",\"authors\":\"T. Bijeesh\",\"doi\":\"10.18495/COMENGAPP.V3I1.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing (CS) is a data acquisition technique that is gaining popularity because of the fact that the reconstruction of the original signal is possible even if it was sampled at a sub-Nyquist rate. In contrast to the traditional sampling method, in CS we take a few measurements from the signal and the original signal can then be reconstructed from these measurements by using an optimization technique called l1 -minimization. Computer engineers and mathematician have been equally fascinated by this latest trend in digital signal processing. In this work we perform an evaluation of different l1 -minimization algorithms for their performance in reconstructing the signal in the context of CS. The algorithms that have been evaluated are PALM (Primal Augmented Lagrangian Multiplier method), DALM (Dual Augmented Lagrangian Multiplier method) and ISTA (Iterative Soft Thresholding Algorithm). The evaluation is done based on three parameters which are execution time, PSNR and RMSE.\",\"PeriodicalId\":120500,\"journal\":{\"name\":\"Computer Engineering and Applications\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18495/COMENGAPP.V3I1.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18495/COMENGAPP.V3I1.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance evaluation of popular l1-minimization algorithms in the context of Compressed Sensing
Compressed sensing (CS) is a data acquisition technique that is gaining popularity because of the fact that the reconstruction of the original signal is possible even if it was sampled at a sub-Nyquist rate. In contrast to the traditional sampling method, in CS we take a few measurements from the signal and the original signal can then be reconstructed from these measurements by using an optimization technique called l1 -minimization. Computer engineers and mathematician have been equally fascinated by this latest trend in digital signal processing. In this work we perform an evaluation of different l1 -minimization algorithms for their performance in reconstructing the signal in the context of CS. The algorithms that have been evaluated are PALM (Primal Augmented Lagrangian Multiplier method), DALM (Dual Augmented Lagrangian Multiplier method) and ISTA (Iterative Soft Thresholding Algorithm). The evaluation is done based on three parameters which are execution time, PSNR and RMSE.