超临界CO2涡轮线性叶栅辐射换热数值研究

Akshay Khadse, Andres Curbelo, J. Kapat
{"title":"超临界CO2涡轮线性叶栅辐射换热数值研究","authors":"Akshay Khadse, Andres Curbelo, J. Kapat","doi":"10.1115/gt2019-91613","DOIUrl":null,"url":null,"abstract":"The fundamental research and technology development for supercritical CO2 (sCO2) power cycles is gaining worldwide popularity. This is due to their promise of high efficiency, compactness, wide-range-applicability and eco-friendliness. One of the active research areas in the sCO2 power cycle field is to increase cycle efficiency by utilizing a higher turbine inlet temperature. At high temperatures within turbines, radiation may contribute a significant portion of overall heat transfer. The purpose of this paper is to investigate and quantify the effects of radiation heat transfer within a first stage sCO2 turbine linear cascade. This particular topic has not been explored by researchers yet. The correct estimation of radiation heat transfer can prove to be critical for the design of turbine blade cooling system. The aerodynamic and heat transfer analysis of a turbine cascade is carried out using a commercial computational code, STAR-CCM+. Spectral absorption coefficient for CO2 is derived using HITRAN database at required temperature and pressure. Broadening and shifting of intensity lines due to high pressure and temperature are taken into consideration. A second approach utilizes Planck mean absorption coefficient as a function of temperature. Although the data can be extrapolated for the required higher pressure, accuracy of that extrapolated data cannot be verified. Hence the secondary purpose of this study is to encourage researchers to fill the fundamental gaps in the knowledge of CO2 radiation. Findings presented here suggest that radiation can be neglected for cooling system design of the sCO2 turbine stage 1 vane for both inlet temperatures of 1350K and 1775K.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Study of Radiation Heat Transfer for a Supercritical CO2 Turbine Linear Cascade\",\"authors\":\"Akshay Khadse, Andres Curbelo, J. Kapat\",\"doi\":\"10.1115/gt2019-91613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fundamental research and technology development for supercritical CO2 (sCO2) power cycles is gaining worldwide popularity. This is due to their promise of high efficiency, compactness, wide-range-applicability and eco-friendliness. One of the active research areas in the sCO2 power cycle field is to increase cycle efficiency by utilizing a higher turbine inlet temperature. At high temperatures within turbines, radiation may contribute a significant portion of overall heat transfer. The purpose of this paper is to investigate and quantify the effects of radiation heat transfer within a first stage sCO2 turbine linear cascade. This particular topic has not been explored by researchers yet. The correct estimation of radiation heat transfer can prove to be critical for the design of turbine blade cooling system. The aerodynamic and heat transfer analysis of a turbine cascade is carried out using a commercial computational code, STAR-CCM+. Spectral absorption coefficient for CO2 is derived using HITRAN database at required temperature and pressure. Broadening and shifting of intensity lines due to high pressure and temperature are taken into consideration. A second approach utilizes Planck mean absorption coefficient as a function of temperature. Although the data can be extrapolated for the required higher pressure, accuracy of that extrapolated data cannot be verified. Hence the secondary purpose of this study is to encourage researchers to fill the fundamental gaps in the knowledge of CO2 radiation. Findings presented here suggest that radiation can be neglected for cooling system design of the sCO2 turbine stage 1 vane for both inlet temperatures of 1350K and 1775K.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-91613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-91613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

超临界CO2 (sCO2)动力循环的基础研究和技术开发日益受到世界各国的重视。这是因为它们具有高效率、紧凑性、广泛适用性和生态友好性。利用较高的涡轮进口温度来提高循环效率,是sCO2动力循环领域的研究热点之一。在涡轮机内的高温下,辐射可能对整个传热有很大的贡献。本文的目的是研究和量化一级sCO2涡轮线性叶栅内辐射传热的影响。这个特殊的话题还没有被研究人员探索过。辐射换热的正确估计对涡轮叶片冷却系统的设计至关重要。利用商用计算程序STAR-CCM+对涡轮叶栅进行了气动和传热分析。在要求的温度和压力下,利用HITRAN数据库推导CO2的光谱吸收系数。考虑了高压和高温引起的强度线展宽和位移。第二种方法利用普朗克平均吸收系数作为温度的函数。虽然数据可以外推到所需的更高压力,但外推数据的准确性无法验证。因此,这项研究的第二个目的是鼓励研究人员填补二氧化碳辐射知识的基本空白。本文的研究结果表明,对于进口温度为1350K和1775K的sCO2涡轮一级叶片的冷却系统设计,可以忽略辐射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Study of Radiation Heat Transfer for a Supercritical CO2 Turbine Linear Cascade
The fundamental research and technology development for supercritical CO2 (sCO2) power cycles is gaining worldwide popularity. This is due to their promise of high efficiency, compactness, wide-range-applicability and eco-friendliness. One of the active research areas in the sCO2 power cycle field is to increase cycle efficiency by utilizing a higher turbine inlet temperature. At high temperatures within turbines, radiation may contribute a significant portion of overall heat transfer. The purpose of this paper is to investigate and quantify the effects of radiation heat transfer within a first stage sCO2 turbine linear cascade. This particular topic has not been explored by researchers yet. The correct estimation of radiation heat transfer can prove to be critical for the design of turbine blade cooling system. The aerodynamic and heat transfer analysis of a turbine cascade is carried out using a commercial computational code, STAR-CCM+. Spectral absorption coefficient for CO2 is derived using HITRAN database at required temperature and pressure. Broadening and shifting of intensity lines due to high pressure and temperature are taken into consideration. A second approach utilizes Planck mean absorption coefficient as a function of temperature. Although the data can be extrapolated for the required higher pressure, accuracy of that extrapolated data cannot be verified. Hence the secondary purpose of this study is to encourage researchers to fill the fundamental gaps in the knowledge of CO2 radiation. Findings presented here suggest that radiation can be neglected for cooling system design of the sCO2 turbine stage 1 vane for both inlet temperatures of 1350K and 1775K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1