基于真实观测和聚类技术的多智能体仿真设计

Imen Saffar, Arnaud Doniec, J. Boonaert, S. Lecoeuche
{"title":"基于真实观测和聚类技术的多智能体仿真设计","authors":"Imen Saffar, Arnaud Doniec, J. Boonaert, S. Lecoeuche","doi":"10.1109/ICTAI.2011.89","DOIUrl":null,"url":null,"abstract":"The multi-agent simulation consists in using a set of interacting agents to reproduce the dynamics and the evolution of the phenomena that we seek to simulate. It is considered now as an alternative to classical simulations based on analytical models. But, its implementation remains difficult, particularly in terms of behaviors extraction and agents modelling. This task is usually performed by the designer who has some expertise and available observation data on the process. In this paper, we propose a novel way to make use of the observations of real world agents to model simulated agents. The modelling is based on clustering techniques. Our approach is illustrated through an example in which the behaviors of agents are extracted as trajectories and destinations from video sequences analysis. This methodology is investigated with the aim to apply it, in particular, in a retail space simulation for the evaluation of marketing strategies. This paper presents experiments of our methodology in the context of a public area modelling.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-agent Simulation Design Driven by Real Observations and Clustering Techniques\",\"authors\":\"Imen Saffar, Arnaud Doniec, J. Boonaert, S. Lecoeuche\",\"doi\":\"10.1109/ICTAI.2011.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-agent simulation consists in using a set of interacting agents to reproduce the dynamics and the evolution of the phenomena that we seek to simulate. It is considered now as an alternative to classical simulations based on analytical models. But, its implementation remains difficult, particularly in terms of behaviors extraction and agents modelling. This task is usually performed by the designer who has some expertise and available observation data on the process. In this paper, we propose a novel way to make use of the observations of real world agents to model simulated agents. The modelling is based on clustering techniques. Our approach is illustrated through an example in which the behaviors of agents are extracted as trajectories and destinations from video sequences analysis. This methodology is investigated with the aim to apply it, in particular, in a retail space simulation for the evaluation of marketing strategies. This paper presents experiments of our methodology in the context of a public area modelling.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多智能体模拟包括使用一组相互作用的智能体来重现我们试图模拟的动态和进化现象。它现在被认为是基于分析模型的经典模拟的一种替代方法。但是,它的实现仍然很困难,特别是在行为提取和智能体建模方面。这项任务通常由具有一定专业知识和可用的流程观察数据的设计人员执行。在本文中,我们提出了一种利用真实世界智能体的观察来模拟智能体的新方法。建模是基于聚类技术的。我们的方法通过一个例子来说明,在这个例子中,从视频序列分析中提取代理的行为作为轨迹和目的地。这种方法进行了调查,目的是应用它,特别是在零售空间模拟营销策略的评估。本文介绍了我们的方法在公共区域建模的背景下的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-agent Simulation Design Driven by Real Observations and Clustering Techniques
The multi-agent simulation consists in using a set of interacting agents to reproduce the dynamics and the evolution of the phenomena that we seek to simulate. It is considered now as an alternative to classical simulations based on analytical models. But, its implementation remains difficult, particularly in terms of behaviors extraction and agents modelling. This task is usually performed by the designer who has some expertise and available observation data on the process. In this paper, we propose a novel way to make use of the observations of real world agents to model simulated agents. The modelling is based on clustering techniques. Our approach is illustrated through an example in which the behaviors of agents are extracted as trajectories and destinations from video sequences analysis. This methodology is investigated with the aim to apply it, in particular, in a retail space simulation for the evaluation of marketing strategies. This paper presents experiments of our methodology in the context of a public area modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1