稀疏深度神经网络图挑战的GPU实现

M. Bisson, M. Fatica
{"title":"稀疏深度神经网络图挑战的GPU实现","authors":"M. Bisson, M. Fatica","doi":"10.1109/HPEC.2019.8916223","DOIUrl":null,"url":null,"abstract":"This paper presents a CUDA implementation of the latest addition to the Graph Challenge, the inference computation on a collection of large sparse deep neural networks. A single Tesla V100 can compute the inference at 3.7 TeraEdges/s. Using the managed memory API available in CUDA allows for simple and efficient distribution of these computations across a multiGPU NVIDIA DGX-2 server.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A GPU Implementation of the Sparse Deep Neural Network Graph Challenge\",\"authors\":\"M. Bisson, M. Fatica\",\"doi\":\"10.1109/HPEC.2019.8916223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a CUDA implementation of the latest addition to the Graph Challenge, the inference computation on a collection of large sparse deep neural networks. A single Tesla V100 can compute the inference at 3.7 TeraEdges/s. Using the managed memory API available in CUDA allows for simple and efficient distribution of these computations across a multiGPU NVIDIA DGX-2 server.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文介绍了图形挑战最新添加的CUDA实现,该挑战是对大型稀疏深度神经网络集合的推理计算。一台Tesla V100可以以3.7 TeraEdges/s的速度计算推理。使用CUDA中可用的托管内存API可以在多gpu NVIDIA DGX-2服务器上简单有效地分配这些计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A GPU Implementation of the Sparse Deep Neural Network Graph Challenge
This paper presents a CUDA implementation of the latest addition to the Graph Challenge, the inference computation on a collection of large sparse deep neural networks. A single Tesla V100 can compute the inference at 3.7 TeraEdges/s. Using the managed memory API available in CUDA allows for simple and efficient distribution of these computations across a multiGPU NVIDIA DGX-2 server.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1