Diana A. Urrego-Patarroyo, E. Sánchez, S. Carlos-Hernandez, J. Béteau
{"title":"厌氧过程的循环神经网络生物质观测器","authors":"Diana A. Urrego-Patarroyo, E. Sánchez, S. Carlos-Hernandez, J. Béteau","doi":"10.1109/ISIC.2008.4635946","DOIUrl":null,"url":null,"abstract":"In this paper, a recurrent neural networks observer for anaerobic processes is proposed; the main objective is to estimate biomass, in a completely stirred tank reactor. The neural network is trained with an extended Kalman filter algorithm. The applicability of the proposed observer is verified via simulations.","PeriodicalId":342070,"journal":{"name":"2008 IEEE International Symposium on Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recurrent Neural Networks Biomass Observer for Anaerobic Processes\",\"authors\":\"Diana A. Urrego-Patarroyo, E. Sánchez, S. Carlos-Hernandez, J. Béteau\",\"doi\":\"10.1109/ISIC.2008.4635946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a recurrent neural networks observer for anaerobic processes is proposed; the main objective is to estimate biomass, in a completely stirred tank reactor. The neural network is trained with an extended Kalman filter algorithm. The applicability of the proposed observer is verified via simulations.\",\"PeriodicalId\":342070,\"journal\":{\"name\":\"2008 IEEE International Symposium on Intelligent Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2008.4635946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2008.4635946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recurrent Neural Networks Biomass Observer for Anaerobic Processes
In this paper, a recurrent neural networks observer for anaerobic processes is proposed; the main objective is to estimate biomass, in a completely stirred tank reactor. The neural network is trained with an extended Kalman filter algorithm. The applicability of the proposed observer is verified via simulations.