多q表q学习

Nitchakun Kantasewi, S. Marukatat, S. Thainimit, Okumura Manabu
{"title":"多q表q学习","authors":"Nitchakun Kantasewi, S. Marukatat, S. Thainimit, Okumura Manabu","doi":"10.1109/ICTEMSYS.2019.8695963","DOIUrl":null,"url":null,"abstract":"Q-learning is a popular reinforcement learning technique for solving shortest path (STP) problem. In a maze with multiple sub-tasks such as collecting treasures and avoiding traps, it has been observed that the Q-learning converges to the optimal path. However, the sum of obtained rewards along the path in average is moderate. This paper proposes Multi-Q-Table Q-learning to address a problem of low average sum of rewards. The proposed method constructs a new Q-table whenever a sub-goal is reached. This modification let an agent to learn that the sub-reward is already collect and it can be obtained only once. Our experimental results show that a modified algorithm can achieve an optimal answer to collect all treasures (positive rewards), avoid pit and reach goal with the shortest path. With a small size of maze, the proposed algorithm uses the larger amount of time to achieved optimal solution compared to the conventional Q-learning.","PeriodicalId":220516,"journal":{"name":"2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi Q-Table Q-Learning\",\"authors\":\"Nitchakun Kantasewi, S. Marukatat, S. Thainimit, Okumura Manabu\",\"doi\":\"10.1109/ICTEMSYS.2019.8695963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Q-learning is a popular reinforcement learning technique for solving shortest path (STP) problem. In a maze with multiple sub-tasks such as collecting treasures and avoiding traps, it has been observed that the Q-learning converges to the optimal path. However, the sum of obtained rewards along the path in average is moderate. This paper proposes Multi-Q-Table Q-learning to address a problem of low average sum of rewards. The proposed method constructs a new Q-table whenever a sub-goal is reached. This modification let an agent to learn that the sub-reward is already collect and it can be obtained only once. Our experimental results show that a modified algorithm can achieve an optimal answer to collect all treasures (positive rewards), avoid pit and reach goal with the shortest path. With a small size of maze, the proposed algorithm uses the larger amount of time to achieved optimal solution compared to the conventional Q-learning.\",\"PeriodicalId\":220516,\"journal\":{\"name\":\"2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTEMSYS.2019.8695963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTEMSYS.2019.8695963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

q -学习是解决最短路径问题的一种流行的强化学习技术。在具有多子任务(如收集宝藏和避免陷阱)的迷宫中,已经观察到q -学习收敛于最优路径。然而,平均而言,沿着路径获得的奖励总和是中等的。本文提出了多q表q学习方法来解决平均奖励和过低的问题。该方法在达到子目标时构造一个新的q表。这种修改让agent知道子奖励已经被收集,并且只能获得一次。实验结果表明,改进后的算法可以达到集齐所有宝藏(正奖励)、避坑和最短路径到达目标的最优答案。在迷宫规模较小的情况下,与传统的Q-learning相比,该算法使用了更长的时间来获得最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi Q-Table Q-Learning
Q-learning is a popular reinforcement learning technique for solving shortest path (STP) problem. In a maze with multiple sub-tasks such as collecting treasures and avoiding traps, it has been observed that the Q-learning converges to the optimal path. However, the sum of obtained rewards along the path in average is moderate. This paper proposes Multi-Q-Table Q-learning to address a problem of low average sum of rewards. The proposed method constructs a new Q-table whenever a sub-goal is reached. This modification let an agent to learn that the sub-reward is already collect and it can be obtained only once. Our experimental results show that a modified algorithm can achieve an optimal answer to collect all treasures (positive rewards), avoid pit and reach goal with the shortest path. With a small size of maze, the proposed algorithm uses the larger amount of time to achieved optimal solution compared to the conventional Q-learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Indoor Room Identify and Mapping with Virtual based SLAM using Furnitures and Household Objects Relationship based on CNNs Multi Q-Table Q-Learning On Building Detection Using the Class Activation Map: Case Study on a Landsat8 Image ROS-Based Mobile Robot Pose Planning for a Good View of an Onboard Camera using Costmap Food categories classification and Ingredients estimation using CNNs on Raspberry Pi 3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1