{"title":"偏振输出耦合波罗棱镜谐振腔特性分析","authors":"Hailong Yang, J. Meng, Weibiao Chen","doi":"10.1117/12.2064390","DOIUrl":null,"url":null,"abstract":"An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characteristic analysis of a polarization output coupling Porro prism resonator\",\"authors\":\"Hailong Yang, J. Meng, Weibiao Chen\",\"doi\":\"10.1117/12.2064390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.\",\"PeriodicalId\":293926,\"journal\":{\"name\":\"International Symposium on High Power Laser Systems and Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on High Power Laser Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2064390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on High Power Laser Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2064390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characteristic analysis of a polarization output coupling Porro prism resonator
An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.